
(N
N L Systems
N Optimization

Laboratory

A Heuristic Ceiling Point Algorithm
for General Integer Linear Programming

by
Robert M. Saltzman

and Frederick S. Hillier

TECHNICAL REPORT SOL 88-19

November 1988

DTIC

ltH

Department of Operations Research
Stanford University
Stanford, CA 94305 1 ,DISTRIBUTION STANI r T A

DiaUdbution Unlim ted

SYSTEMS OPTIMIZATION LABORATORY
DEPARTMENT OF OPERATIONS RESEARCH

STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305-4022

A Heuristic Ceiling Point Algorithm
for General Integer Linear Programming

by
Robert M. Saltzman

and Frederick S. Hillier

TECHNICAL REPORT SOL 88-19

November 1988

DTIC
JAN 3 18

Research and reproduction of this report were partially supported by the Office of Naval Research
Contract N00014-85-K-0343.

Any opinions, findings, and conclusions or recommendations expressed in this publication are those
of the author(s) and do NOT necessarily reflect the views of the above sponsors.

Reproduction in whole or in part is permitted for any purposes of the United States Government.
This document has been approved for public release and sale; its distribution is unlimited.

89 1 03P,135

Abstract

A Heuristic Ceiling Point Algorithm

for General Integer Linear Programming

Robert M. Saltzman and Frederick S. Hillier

Stanford University, 1988

This report describes a heuristic algorithm for the pure, general integer linear pro-

gramming problem (ILP). In attempting to quickly obtain a near-optimal solution (with-

out concern for establishing optimality), the algorithm searches for a feasible 1-ceiling

point. A feasible 1-ceiling point may be thought of as an integer solution lying on or

near the boundary of the feasible region for the LP-relaxation associated with.(ILP).

Precise definitions of 1-ceiling points and the role they play in an integer linear program

are presented in a recent report by the authors. One key theorem therein demonstrates

that all optimal solutions for anrILP) whose feasible region is non-empty and bounded

are feasible 1-ceiling points. Consequently, such a problem may be solved by enumerating

just its feasible 1-ceiling points. Our heuristic approach is based upon the idea that a

feasible 1-ceiling point found relatively near the optimal solution for the LP-relaxation is

apt to have a high (possibly even optimal) objective function value. Having applied this

Heuristic Ceiling Point Algorithm to 48 test problems taken from the literature, it appears

that searching for such 1-ceiling points usually does provide a very good solution with a

moderate amount of computational effort. -, 2 -

Subject Classification for OR/MS Index: Programming - Integer Algorithms; Heuristic

Key Words: integer linear programming; general integer variables; heuristic algorithm;

ceiling points; linear programming relaxation; enumeration algorithms

. . .Ii'1 i I I I i I I I

A Heuristic Ceiling Point Algorithm for General Integer Linear Programming

1. Introduction

This report describes a heuristic algorithm for the pure, general integer linear pro-

gramming problem in m constraints and n variables xj, j = 1, ... , n, whose form is

Maximize cT X = z

subject to Ax < b (ILP)

x > 0, x integer,

where A E Rm~n, b E Rm and c E Rn. All the data {A,b,c} are assumed to be rational

numbers, but they are unrestricted in sign. The problem is "pure" in that all of the

variables are required to take on nonnegative integer values. It is "general" in the sense

that the variables may take on any nonnegative integer values permitted by Ax < b, as

opposed to being restricted to 0 or 1 (the binary case). An important additional assumption

is that no implicit or explicit equality constraints are used to define the feasible region

FR ={x > 01 Ax < b} for (LPR), the linear programming relaxation associated with

(ILP). Common applications of this model occur in capital budgeting (project selection),

resource allocation and fixed-charge (plant location) problems. A further discussion of

application areas for (ILP) may be found in Taha (1975) or Garfinkel and Nemhauser

(1972).

While an exact algorithm for (ILP) guarantees convergence to an optimal solution, a

heuristic algorithm attempts only to provide a high-quality solution. However, while the

former may require a prohibitive amount of computing time to reach an optimal solution

and prove its optimality, the latter is designed to speedily obtain a near-optimal solution

without concern for establishing optimality. Recently, Lee and Guignard (1988) described

an efficient heuristic algorithm for a special case of (ILP), the multidimensional 0-1 knap-p

sack problem. By contrast, our Heuristic Ceiling Point Algorithm is best suited for the

general integer case. It attempts to quickly locate a feasible "1-ceiling point" with respect 0

to one of the constraints binding at t, the optimal solution for (LPR). To understand

why this might be a reasonable approach, we briefly review some of the key concepts of -

Saltzman and Hillier (1988). - , Lt7 Codes
.1 Dist Special

1. Introduction 2

An integer solution x is a 1-ceiling point with respect to the ill constraint, denoted

x = 1-CP(i), if (1) x satisfies this constraint, i.e., aTz < bi (where ai is the itl row of

the constraint matrix A), and (2) modifying some component of x by +1 or -1 yields a

solution which violates this constraint, i.e., aTz + aijI > bi for at least one j. Thus, x =

1-CP(i) means x narrowly satisfies the il h constraint: taking a unit step from x toward

the ilh constraining hyperplane in a direction parallel to some coordinate axis results in

an infeasible point. Similarly, an integer solution x is defined to be a 1-ceiling point with

respect to the feasible region FR, denoted x = 1-CP(FR), if (1) x satisfies all constraints,

i.e., z E FR, and (2) modifying some component of z by +1 or -1 leads to a solution which

violates one or more constraints, i.e., 3i : aTx + laijI > bi for at least one j. Saltzman and

Hillier (1988) demonstrate that all optimal solutions for an (ILP) whose feasible region

is non-empty and bounded are feasible 1-CP(i)'s, i.e., 1-CP(FR)'s. Consequently, one

way to solve (ILP) is to enumerate its feasible 1-ceiling points. Our heuristic approach is

based upon the idea that a feasible 1-ceiling point found relatively near i is apt to have

a high (possibly even optimal) objective function value. On 48 test problems taken from

the literature, searching for such 1-ceiling points usually did provide a very good solution

with a moderate amount of computational effort.

The Heuristic Ceiling Point Algorithm has three main components or phases described,

in turn, in Sections 2, 3 and 4. The first phase involves solving (LPR) and extracting some

information about the structure of the feasible region near i. The second phase seeks
1-CP(FR)9s by looking for 1-CP(i)'s with respect to an appropriately chosen constraint

(i) and then checking for feasibility. The third phase attempts to improve upon a feasi-

ble integer solution found in the second phase by altering the value of one or two of its

components to reach a higher-valued 1-CP(FR). Section 5 discusses criteria for when to

terminate the algorithm, while Section 6 reports on our computational experience. Section

7 summarizes our findings, and is followed by two appendices. The first appendix gives the

variable bounds and options used in the GAMS/ZOOM runs reported in Section 6, while

the second lists the Fortran code implementation of the Heuristic Ceiling Point Algorithm.

2. Phase 1: Using the Linear Programming Relaxation 3

2. Phase 1: Using the Linear Programm ing Relaxation

We first introduce some additional notation to facilitate the discussion which follows.

Let i cTJ denote the optimal objective function value for (LPR) and A - {il aTi = bi}

the set of constraints binding at i. Further, let T -- {zJ aTx < bi,Vi E A} be the cone

formed by the extreme rays of FR emanating from i. Also, the terms "search constraint"

and "search constraint hyperplane" will be used interchangeably and be denoted by the

same index. We assume that i is not all-integer, for otherwise i solves (ILP).

Even though it is possible to construct an (ILP) whose optimal solution x* is ar-

bitrarily far from i, it still seems to be a good idea in practice to search for x* in the

neighborhood of i. Several others have taken this approach, including Glover (1973) and

Hillier (1969a) in the pure, general integer case, and Ibaraki, Ohashi and Mine (1974) and

Faaland and Hillier (1979) in the mixed integer case. An outline of the Heuristic Ceiling

Point Algorithm's search for a good feasible integer solution is as follows. Start at i and

move away from t on a constraint hyperplane (the current "search constraint hyperplane")

binding at i. While moving along the surface of the feasible region, periodically round a

continuous solution (somehow) to a nearby integer solution. How this is accomplished is

described in the next section. Of course, in R2 the constraint hyperplanes binding at ±

coincide with the extreme rays of FR. In higher dimensions, a search direction along a

binding constraint hyperplane can be formed from among the several extreme rays defin-

ing the feasible portion of this constraint hyperplane. The main purpose of the first phase

then is to provide the heuristic algorithm with i, the set of constraints binding at i, and

the set {d', d2 , ... } of normalized extreme directions defining the cone FR. This can be

accomplished, for example, by applying the simplex method to (LPI).

3. Phase 2: Locating 1-Ceiling Points

Given the structure of the feasible region near i, as defined by the set of constraint

3. Phase 2: Locating 1-Ceiling Points 4

hyperplanes binding at i and the extreme directions emanating from i, the second phase

looks for 1-ceiling points with respect to one particular binding constraint. This section

will describe (1) how a specific search constraint hyperplane (h) is chosen, (2) how a search

direction d lying on (h) is found, (3) how to move along the search constraint hyperplane

(h) in the direction d and round to integer solutions, and finally, (4) whether or not the

rounding procedure is guaranteed to find a 1-CP(h).

3.1. Choosing a Search Constraint Hyperplane (h)

Depending on c, 1-ceiling points with respect to one constraint alight tend to be higher-

valued than those with respect to another constraint. In a maximization problem, the

objective function decreases as we move away from i along every extreme direction dk. The

rate of change of the objective function per unit step taken away from i along dk is given by
pk = cTd k (since IldkI1 = 1). We want to identify a constraint hyperplane (h) along which

the objective changes as little as possible, for 1-ceiling points with respect to this constraint

are apt to have relatively high objective function values. Since the feasible portion of

each binding constraint hyperplane in s?" is generated by nonnegative combinations of

the (linearly independent) extreme directions emanating from 2, a reasonable choice for

a search constraint hyperplane is that which has the minimum sum of rates pk over all

extreme directions defining the hyperplane. Letting Ei be the set of (n - 1) extreme

directions emanating from i which lie on the ith constraint hyperplane, our choice of

search constraint hyperplane (h) is such that

h E arg min Epk.
kEEi

3.2. Specifying a Search Direction d

Having selected a search constraint hyperplane (h) on or just below which we hope

to locate 1-CP(h)'s, we need to specify a direction of movement along (h) away from

3. Phase 2: Locating 1-Ceiling Points 5

it

Figure 1. Search direction d = d' + d2 .

., denoted as the search direction d. There are a number of ways to construct such a

search direction, but one which corresponds to the manner in which the search constraint

hyperplane (h) is chosen is simply to give equal weight to all of the extreme directions

which generate the feasible portion of (h), i.e., take

d= E dk.
kEE

In R3 , for example, the search direction d in Figure 1 runs midway between the two extreme

directions d1 and d2 which delineate the feasible part of constraint hyperplane (2). An

alternative method of selecting both a search constraint hyperplane and search direction

would be to associate a nonnegative weight w' with the kt" extreme direction and then use

wk d instead of dk in the calculations of pk, h and d. Such weights might reflect a balance

between feasibility and objective function considerations for each extreme direction.

3. Phase 2: Locating 1-Ceiling Points 6

3.3. Rounding From a Non-integer to an Integer Solution

Movement away from i occurs parametrically on constraint hyperplane (h) along

the ray i + Gd by determining positive values of 0, say a', 02, 03,... such that the point

X1 = + Otd contains at least one integer component. A stopping point xt occurs when

the ray i + Gd meets a "coordinate hyperplane" of the form xj = integer. The heuristic

algorithm stops at each xt corresponding to a 6t and rounds the remaining non-integer

components of xt in a manner yielding an all-integer solution y which is at least feasible with

respect to the search constraint hyperplane (h). There are two key questions concerning

one of these integer solutions y. First, is y a 1-CP(h)? Second, does y satisfy all of the

other constraints? If the answer to both questions is yes then we have located a 1-CP(FR),

which is the goal of our heuristic approach. Before further examining these questions, the

rounding procedure will be described.

The process begins by increasing 6 until reaching a point z 1 _= t + 01 d which possesses

at least one integer component, say component 1. Essentially, I is the component of 2 + Od

which reaches an integer value first because either the fractional part of il is close to 0 or

1, or the magnitude of di is large relative to the other components, or a combination of

both. More precisely, I is determined as

I E arg min {fj/d},

where
-j(ij - Vj]), if dj <0;

fJtj ([j-2j)- 1, if di >0.

Here, fj E (0, 1] and will equal 1 when ii is integer so that fj measures the distance to the

next integer coordinate hyperplane for xj when moving in direction d. Thus, 01 = fi/d,

and xl = t+Old. On the next iteration, 02 is found by replacing i with xl in the definition

of fj. In general, iteration t determines 0t and xt =_ z t- 1 + O'd. If the argnminj{fi/d,}

contains q > 1 elements, the next stopping point will contain q integral components instead

of just one. In Figure 2, the search constraint hyperplane is (1) and the search direction

d is the extreme direction emanating from i that coincides with (1). The first stopping

3. Phase 2: Locating 1-Ceiling Points 7

x 2
3

x 2

22

(2)

0 -

0 1 2 3 x

Figure 2. Stopping points {X' X2 , X3 } are rounded to integer points {Y, y2, y3 }.

point x1 is the point on (1) having l = 2, the second stopping point X2 is the point on

(1) having L = 1, and the third stopping point x3 is the point on (1) having X2 = 3.

For ease of specifying a rule on how to round xt to an integer solution yt, all constraints

are first converted into < form. This is done just after the (LPR) has been solved by

multiplying through any > constraints by -1. Recall from Section 1 that no equality

constraints are assumed to be part of the formulation of (ILP). The following rule for

rounding the other components j V arg min, f,/di yields an integer solution y' that satisfies

constraint (h) because aTyt < aTZI = bh:

I Lx J, if a, > 0;

4J - Lxt. +] if ah=; (1)
rXfi, if ahi < 0.

Thus, when ah, is positive, rounding to the feasible side of constraint (h) requires rounding

the jth component of z down, whereas when ahj is negative, rounding to the feasible side

3. Phase 2: Locating 1-Ceiling Points 8

of (h) requires rounding the jth component of xt up. Of course, for any direction 3 in which

ahj = 0, the jth component of the continuous solution xt can be safely rounded either up

or down since the feasibility of y' with respect to (h) is unaffected by the value of its j"

component. Our rule in this case is to round x to the nearest integer. In the example

of Figure 2, both components of x t are rounded down for t = 1,2,3 since both a,1 and

a12 are positive. It is worth emphasizing that other rounding schemes may also produce

a solution which is feasible with respect to (h); however, they are likely to require some

comparison of the relative magnitudes of the search constraint's coefficients. Whether the

extra computational effort is worthwhile is an area that could be investigated in the future.

3.4. Results of the Rounding Procedure

Does the above rounding rule yield a solution which is a 1-CP(h)? In R2 , the rounded

solution y' is guaranteed to be a 1-CP(h). This is because one component of y' is fixed at

an integer while the other component is found by rounding the corresponding component

of xt up or down, so respectively decreasing or increasing this latter component of yt by

one yields a solution which violates (h). In higher dimensions, however, the rounding rule

does not guarantee that yt is a 1-CP(h) even though y' is clearly nonnegative (since x t is)

and all-integer (by definition).

Lemma 1. For n > 3, rounding the continuous solution xt E R" by the rule specified in

(1) does not necessarily yield a solution y' which is a 1-CP(h).

Proof: From Definition 3.3 of Saltzman and Hillier (1988), an integer solution y' is a

1-ceiling point with respect to a constraint (h) if (1) aTyt < bh, and (2) a Ty, + ahj I > bh

for at least one j. Letting sh(yt) = bh - ay t be the slack of y' with respect to (h), a

necessary and sufficient condition for y' to be a 1-CP(h) is: 0 < sh(y') < maxj laji. To

check whether or not this condition holds, let us first define j =y y - x t , i.e.,

[x J -x l, if ah, > 0;
Lx_- + xj Z , if aj=O0;
rx i - Xj , if ahj < 0.

3. Phase 2: Locating I-Ceiling Points

Because x* satisfies constraint (h) exactly, we have s(yt) = b, - aT(z +-) = -aT

- j ahj6j >_ 0. The last inequality follows since each ahj6j < 0. t Thus, by its con-

struction, yt always satisfies constraint (h), as asserted previously. Note that 16JI E [0, 1)

for all j, so that on average, 16i I - . Then we might expect st(yt) I 3i jahj 1, or

sh(y') 111ah Ili, half the L1-norm of al,. On the other hand, maxi laijI E ilahII, the

L,-norm of a,. However, since I1ahl Iahl112 >2... > Ilahlk,1, it is certainly possible that

IahiI1 IlahlioC. In this case, sh(yt) may be larger than maxi Iahil and then the integer

solution y' is not a 1-CP(h). With this procedure, the chances of rounding to a 1-CP(h)

improve as the magnitude of the largest coefficient in constraint (h) increases relative to

that of the average coefficient in constraint (h). I

Although we cannot guarantee that y' is a 1-CP(h) at any particular iteration k, it

is likely that over the course of several iterations at least one of the ye's generated will

be a 1-CP(h). The more important question is whether or not the integer solution y,

satisfies all the other functional constraints. When y' is feasible but is not a 1-CP(h), it

is frequently a 1-ceiling point with respect to some other constraint, in which case y' is a

1-CP(FR). If y' is not a 1-ceiling point with respect to some other constraint, the Phase

3 procedures described in the next section will locate another feasible solution related to

yt which is a 1-CP(FR). In most of the test problems run, the first feasible yt turned out

to be either a 1-CP(h) or a 1-CP(i) with respect to some other constraint binding at t.

As alluded to above, it may be worthwhile computationally to do a more thorough

search for 1-CP(h)'s as we move along constraint hyperplane (h) because one such ceiling

point is never "too far away". To be more precise, suppose that only the j " component

of a stopping point x t is integer, i.e., x = K; then, on the intersection of the feasible

region with the coordinate hyperplane xi = K, as many as half of the vertices of the

(n - 1)-dimensional unit hypercube about xt with all-integer vertices are 1-CP(h)'s. This

was seen in Q2 at the beginning of this subsection and will be shown for n > 3 in the next

theorem.

t For any j such that ahj = 0, yj does not affect the feasibility of y with respect to (h),
so 6, may be set to 0. Also, note that 6, = 0 for all j E argmini{fj/d}.

la i P •I

3. Phase 2: Locating 1-Ceiling Points 10

Theorem 2. For n > 3, let X E R" be any point containing one integer component

and satisfying constraint (h) with equality. Then, ignoring the dimension corresponding

to the integer-valued component of x, the number of 1-CP(h)'s contained in the unique

(n - 1)-dimensional UHC[x] is a strictly positive integer not exceeding 2n-2.

Proof: The proof will be by induction on n, the dimension of x, beginning with n = 3.

Being interested in 1-ceiling points, we may confine the discussion to the all-integer vertices

of UHC[x]. For n- = 3, there are four cases to consider corresponding to the number of

feasible vertices of a 2-dimensional UHC[x], as shown in Figure 3. The arrows in the figure

point to the feasible side of the constraint.

UHC[x] UHC[x] UHC[x)

Case I Case II. Case Iii.

UHC[x UHC[x]
v-e

.4-(h)

v-e -e v-e
2 1 2

Case V.A. Case IV.B.

Figure 3. Cases in the proof of Theorem 2.

Case I. Exactly 1 of the four vertices of UHC[] is feasible. Since a unit step from the

feasible vertex along an edge of UHC[xj leads to one of the other three infeasible vertices,

the feasible vertex is a 1-CP(h).

3. Phase 2: Locating 1-Ceiling Points 11

Case II. Exactly 2 of the four vertices of UHC[z] are feasible. By the linearity of constraint

(h), each of the two feasible vertices is adjacent to one of the other two infeasible vertices.

Hence, each feasible vertex is a I-CP(h).

Case III. Exactly 3 of the four vertices of UHC[x] are feasible. Only two of the three

feasible vertices are adjacent to the one infeasible vertex. Hence, only two of the feasible

vertices of UHC[x] are 1-CP(h)'s.

Case IV. All four vertices of UHC[zI are feasible. There are 2 subcases:

A. Constraint (h) passes through a single vertex v of UHC[]. If la,,I = lah2i, then

only v is a 1-CP(h) since both (v - el) + e2 and (v - e2) + e1 are feasible with respect to

(h). If IahlI # ah21, both v and one of the two vertices adjacent to v are 1-CP(h)'s, but

the other two vertices are not. For example, if a42 > apl > 0, then the vertex v - el is

a 1-CP(h) since (v - eI) + e2 violates (h); however, vertex v - e2 is not a 1-CP(h) since

(v - e2) + el satisfies (h) while vertex v - el - e2 is clearly not a 1-CP(h).

B. Constraint (h) coincides with an edge of UHC[x]. The two vertices on this edge

satisfy constraint (h) with equality, so they both are 1-CP(h)'s. The other two feasible

vertices, however, are adjacent only to other feasible vertices and therefore are not 1-

CP(h)'s.

Thus, when n = 3, either one or two vertices of the 2-dimensional UHC[zJ are 1-

CP(h)'s. To proceed by induction, now assume the theorem holds when the number of

dimensions is 3,4, ...,n, and consider whether it holds when the number of dimensions

is n + 1. Consider the unique ((n + 1) - 1)-dimensional UHC[xJ. Since we are only

interested in the vertices of this UHC[x], this n-dimensional UHC[x] may be examined

as a pair of (n - 1)-dimensional UHC[x]'s. By the induction hypothesis, each of these

(n - 1)-dimensional UHC[x]'s contains no more than 2 -2 vertices which are 1-CP(h)'s.

Therefore, the number of 1-CP(h)'s contained in the unique ((n + 1) - 1)-dimensional

UHC[x] is a strictly positive integer not exceeding 2n2 + 2" - 2 2" -1, which completes

the proof by induction. I

Since the stopping point xt contains q >_ 1 integer components, we restate the result

of Theorem 2 in a slightly more general way. The proof is identical after ignoring these q

4. Phase 3: Improving Upon a Feasible Integer Solution 12

dimensions.

Theorem 2a. For n > 3, let x E g" be any point containing q >_ 1 integer components

and satisfying constraint (h) with equality. Then, ignoring the q dimensions corresponding

to the integer-valued components of x, the number of 1-CP(h)'s contained in the unique

(n - q)-dimensional UHC[x] is a strictly positive integer not exceeding 2n-q-1.

Thus, a considerable number of 1-CP(h)'s may exist as vertices of a unit hypercube

about each stopping point xt . We have not investigated the computational advantages of

examining a larger portion of the vertices of UHC[xl] in the hope of identifying a I-CP(h).

Instead, we developed routines which are guaranteed to identify a 1-CP(FR), provided y'

is feasible, as described in the next section.

4. Phase 3: Improving Upon a Feasible Integer Solution

When the Phase 2 procedure described in the preceding section successfully locates a

feasible integer solution, Phase 3 procedures are invoked to improve upon this solution, if

possible, by altering either one or two of its components. Starting with a feasible solution,

the proce('ures described in the next two subsections always identify a 1-CP(FR). Some

other Phase 3 ideas and possible improvements are considered subsequently.

4.1. One-variable Changes to a Feasible Solution

Given a feasible integer solution y, an attempt is first made to improve upon the

objective value of y by altering just one of its components in a routine we shall refer to as

"STAYFEAS." In essence, STAYFEAS investigates all integer solutions of the form y+Kei,

for all j = 1,..., n and all integer values of K. Let the nonnegative quantity si(y) = bi-aly

be the slack on the il constraint when evaluated at y. Also, let i. - si(y)/aii be

the maximum change that can be made to the jil component of y without violating

4. Phase 3: Improving Upon a Feasible Integer Solution 13

the i'h constraint, i.e., y + $bej exactly satisfies (i). Sufficiently large movement away

from an integer solution y in the plus j direction will eventually violate constraint (i)

if aj > 0, whereas sufficiently large movement away from y in the minus j direction

will eventually violate (i) if aij < 0. Thus, for each component of y, there exists a

range of allowable changes that may be made to this component without violating a given

constraint. Specifically, y + Aej remains feasible with respect to constraint (i) for all

A E [Iii, ri], where this interval of acceptable changes is defined to be

I (-oo, 6ij], if aj > 0;

[l,, r,]- (-oo, +oo), if ai = 0; (2)
[6,,, +oo), if a 3 < 0.

Whether it is beneficial to increase or decrease yj depends upon the sign of ci. If c3

is positive, increasing yj will improve the objective, whereas if ci is negative, decreasing

yj will improve the objective. When ci = 0, no attempt is made to alter the value of

y, since doing so will not improve the objective function. Suppose that cs > 0. The

largest permissable change in yj is the tightest (smallest) right endpoint ri, among all

those found for the respective constraints. Being interested in feasible integer changes

only, this quantity is rounded down and is denoted as Ai. When ci < 0, the largest

permissable change in absolute value to y, is based on the largest left endpoint Iii among

all those found for the respective constraints. More precisely, we define the largest change

that may be made to y, and still yield an integer solution which is feasible with respect to

all constraints as
A._ mini r,,J, if c3 >0O;

-max{[maxi/i],-y}, ifc, <O.

In the latter case, A, is negative and so is not allowed to exceed y, in absolute value in

order to keep y, + A, >- 0.

Once A, has been computed for each j, the last step is to choose the best component

to change based on the amount of improvement it makes in the objective function (if any).

We select component I to change by the amount A,, where I E argmaxi{cAj, provided

that cgA 1 is positive. Otherwise, no alteration of any single component of y leads to a

feasible integer solution with an objective value superior to that of y.

4. Phase 3: Improving Upon a Feasible Integer Solution 14

Table 1(a). Example of the One-variable Change Routine STAYFEAS.

____(i) ai,1 a,,2 ai,3 ai,4 s (y)
(1) -1 1 -2 1 8 1
(2) 2 -2 7 -1 16 0
(3) 1 2 -6 0 23 5

7 8 2 3 _

Table 1(b). Intervals of Acceptable Changes.

p 38) ae in ile (, alon w it, rih sa 44, ri4

a t (1) [-cgw) (-re1o in-2,uo) (-iod b
o ti (2) (-nco0 [0, h) (-c,0 a [0, o)
cm e (3) (-o,is (fn by tn to f (-oh o i)

Ai 0 1 0 1

cj Aj 0 8 0 31

Table I illustrates this procedure for a problem in which y = (8, 35,10, 0) is the given

feasible integer solution. The data of the problem (taken from Garfikel and Nemhauser

1972, p. 328) are given in Table I(a), along with the slack si(y) in each of the three

constraints when evaluated at the near-optimal point y. Table I(b) shows the intervals of

acceptable change with respect to the individual constraints, as defined by (2). Since all
r objective function coefficients ci are positive, the largest acceptable change Aj for each

component j is found by taking the minimum of the corresponding right endpoints rij.

The second to last raw of Table I(b) shows that only the second and fourth components

may change and yield a higher-valued feasible integer solution than y. Finally, since

C2A2 > C4A4, component 2 is selected to change by A2 =' 1. The resultant solution

y' = Y + A~e2 = (8,36, 10, 0) is a 1-ceiling point with respect to constraint (1) since

constraint (1) provided the smallest upper bound ri 2 for component 2. In fact, whenever

this procedure is executed, it identifies a feasible 1-CP(i), as demonstrated in the following

lemma.

4. Phase 3: hnproving Upon a Feasible Integer Solution 15

Lemma 3. If the procedure STAYFEAS is successful in locating a feasible integer solution

better than y, it locates one which is a 1-CP(FR). If unsuccessful, then y itself is a

CP(FR).

Proof: First, the resultant point y' - y + Ale, is feasible, by construction of A,. Second,

y' is "as close as possible" to the argmin or argmax constraint (i*) found in the computation

of A, in the sense that either y' + el violates constraint (i*) (if At > 0) or y' - el violates

(i*) (if At < 0). Therefore, whenever A, # 0, the procedure is successful and the resultant

solution y' is a feasible 1-CP(i*), i.e., y' = 1-CP(FR). If the procedure is unsuccessful,

i.e., A, = 0, then Aj = 0,Vj, implying that for each j there is some constraint (i) which

is violated by either y + ej (if aij > 0) or by y - ej (if ai < 0). Thus, y = CP(FR) by

Definition 1 of Saltzman and Hillier (1988). I

The one-variable change routine STAYFEAS is used as a subroutine of the two-variable

change routine discussed next.

4.2. Two-variable Changes to a Feasible Solution

Given a feasible integer solution y, a slightly more involved effort is also made in Phase

3 to improve upon y by simultaneously altering two of its components. From among several

possible strategies to alter two variables, the one that we employ in the Heuristic Ceiling

Point Algorithm is as follows. The first component to change, say yi, is modified by either

+1 or -1. If the resultant point y' - or Y - is feasible, the STAYFEAS procedure

described in the preceding section is called upon to attempt to change another component

k 0 j of the feasible solution y' to reach a 1-CP(FR) whose value exceeds that of y. If y'

is not feasible, a second procedure referred to as "GAINFEAS" (described subsequently)

is called upon to attempt to change another component c j of the infeasible point y' to

reach a feasible solution whose value exceeds that of y. After all such two-variable changes

have been tried, select that combination which leads to the greatest improvement over the

objective function value of y, if any.

The guiding principle behind our 2-variable change is that altering the first component,

4. Phase 3: Improving Upon a Feasible Integer Solution 16

yi, should generally increase feasibility, while altering the second component, yk, should

improve the objective function. Whether yj is to be increased or decreased by one depends

upon the signs of the coefficients in the j1 h column of A. For instance, if the entries in the

jt ' column of A are all nonnegative, then y- has greater feasibility than y in the sense that

si(y-) > si(y), Vi. The rule used is: decrease yj by one if the sum of the coefficients in the

Pih column of A is positive and yi > 0, since Ei si(y-) > -, si(y); otherwise, increase yj

by one. (It may be worthwhile to separately try both increasing and decreasing the first

variable to change, if possible. t)

The routine GAINFEAS is similar in spirit to STAYFEAS in that it attempts to

change just one component of the current solution in order to reach a feasible 1-CP(i);

the main difference is that GAINFEAS starts from a solution y' which is not feasible. Let

V - {ilsi(y') < O} be the set of constraints violated by y' and S {ilsi(y') >_ 0} be the set

of constraints satisfied by y'. For i E V, interpret ik - si(y')/aik as the minimum change

that must be made to the kVh component of y' in order to satisfy the iOh constraint. For

i E S, the quantity 6i, has the same meaning as it did previously in STAYFEAS, namely,

the maximum change that can be made to the 01c component of y' without violating the

i' h constraint. In either case, y: + 6ikek exactly satisfies (i). As before, there exists a range

of changes to y' which lead to a solution that is feasible with respect to the i h constraint.

More precisely, y' + Aek satisfies (i) for all A E [lik, rik] where

(-oo,6ik], if aik > O;
i s ,rik - (-oo, +oo), if aik = 0;

[bi5, +00) if aik < O.

However, note that 6i5 is negative when aik > 0 and i E V, and 6bil is positive when aiA < 0

and i E V because s,(y') < 0, Vi E V.

Now, for each component k 0 j, we find the allowable range of values that may be

made to component k so that all constraints currently violated by y' become satisfied

and all constraints currently satisfied remain so after movement away from y'. This is

t Desighin a specific heuristic algorithm involves making many choices among possible
ternaties. he heuristic rls proposed here attempt to balance the tradeo tween

computation time and objective function improvement and have performed reasonably well
on our test problems. Foi an excellent discussion on the design oT heuristic algorithms, see
Muller-Merbach (1981).

4. Phase 3: Improving Upon a Feasible Integer Solution 17

accomplished by taking the intersection over i of all the ranges defined above. Let the

resultant interval be denoted [Lk, Rk], where Lk - [max, lik] and Rk - [mini riJ. If

Lk > Rh, then this interval is empty and it is not possible to reach a feasible solution by

altering just one component of y'. Otherwise, the interval [Lk, Rk] is nonempty and the

sign of ck determines which endpoint of the interval to use to modify y.. When ck > 0, the

integral change to yk yielding the greatest benefit to the objective function is Ak = Rk,

whereas if ck < 0, we take A - Lk. When ck = 0, no attempt is made to alter the value

of yk since doing so will not improve the objective function. In any case, if Ak is negative,

it is not allowed to exceed Yk in absolute value, in order to keep yL. + Ak > 0.

Once At has been computed for each k, the component of y' which is the best to

change is selected based on the amount of improvement it makes in the objective function

(if any). Component I is chosen to change by the amount At, where I E argmaxk ckAk. For

each first component j to change by ±1, a best second component k 9 j is found by either

the STAYFEAS or GAINFEAS procedure. Repeating this process for all first components

j - 1,. .. , n, the two components ultimately modified are those whose combined changes

lead to the feasible solution with the greatest objective value, provided this value exceeds

that of the original feasible integer solution y.

Lemma 4. If the procedure GAINFEAS is successful in locating a feasible integer solution

better than y, it locates one which is a 1-CP(FR).

Proof: This follows because the resultant point y" - y' + Ale, is either found by

STAYFEAS, which yields a 1-CP(FR) when it is successful (by Lemma 3) or by GAIN-

FEAS. When this latter procedure is successful, it finds a point y" which is "narrowly

feasible" with respect to the constraint (i*) having the largest left endpoint Iii (if ck < 0)

or smallest right endpoint rij (if ck > 0) in its range of acceptable changes for the second

component. By narrowly feasible we mean that si. (y'") _ 0 but either s. (y" + el) < 0, if

ai.I > 0, or s,.(y" - el) < 0, if a,- < 0. This results from At being the rounded version of

either li.t or rie.. Hence, y" is a 1-CP(FR). I

Regardless of the success or failure of GAINFEAS, we know that the original point y

is a 1-CP(FR) if GAINFEAS is invoked at all because changing one of y's components by

4. Phase 3: Improving Upon a Feasible Integer Solution 18

+ 1 or -1 led to the infeasible solution Y'.

4.3. Other Variations

Certainly other "Phase 3" procedures are possible. We now examine related strategies

employed by some other researchers once they have located a feasible integer solution y

for a general integer linear programming problem. In a spirit similar to our one-variable

change routine STAYFEAS, Echols and Cooper (1968) first make an effort to change one

component of y at a time to locate a solution which both improves the objective function

and is close to a constraint. However, rather than picking the single best component of y to

change, they perform as many one-variable changes as possible, starting with component 1

and ending with component n. In their attempt to modify two components simultaneously,

they initially alter just the first component yj by some fixed integer amount Q in a direction

that increases the objective function. If the resultant solution y' is feasible, the change

is made and the two-variable process repeats from y' (without having altered the second

component) starting with the next larger index (j + 1). On the other hand, if the resultant

solution y' is infeasible, the k h component (k j 1) of y' is changed by the smallest integer

amount necessary to satisfy the constraint most violated by y'. If the resultant solution y"

is feasible, the change is made and the two-variable process repeats from y" starting with

the next larger index (j + 1). Otherwise, the k + 11' component of y' is modified until all

second components have been tried. If this step fails for all k # j, the two-variable routine

is restarted altering the first component by IQI- 1, and so forth. In a more time-consuming

scheme, Echols and Cooper also attempt to modify three variables simultaneously. They

reapply their two-variable change routine to all possible changes in components j and k,

seeking to locate a suitable third component 1 # j, k.

In his search for a feasible integer solution better than y, Hillier (1969a) alternates

between a one-variable change routine and a two-variable change routine. In the first

routine, he also computes a quantity like our 6ij which measures the maximum change

that can be made to the Jil component of y without violating the i t'A constraint while

5. Termination Criteria 19

improving upon the objective function. However, unlike the Heuristic Ceiling Point Algo-

rithm, only unit changes are actually made to a particular variable. This logic is designed

to keep the resultant solution away from the boundary of the feasible region, providing

room for movement on subsequent iterations. Then, in attempting to modify two compo-

nents simultaneously, Hillier considers pairs of variables such that the objective function

coefficient ci corresponding to the first variable yj is larger in absolute value than that

corresponding to the second variable y. He alters the first component yi by one unit (first

in one direction and then in the other) and seeks a second component whose modification

still yields a net improvement in the objective function. If an improved solution is found

during this two-variable routine, the procedure returns to the one-variable change routine,

repeating the process until no improved solution is found.

5. Termination Criteria

Assuming that the optimal solution for the linear programming relaxation of (ILP)

is not all-integer, Phases 2 and 3 are executed. Being heuristic in nature, these procedures

need some way of deciding when to stop iterating, particularly Phase 2, which is somewhat

open-ended. This section first presents the criteria used for terminating the Phase 2

procedure and then the Phase 3 procedure.

Let K1 ,..., K6 be constants which are each a function of the size of the problem.

(Alternatively, they might instead be run-time parameters specified by the user.) The

Phase 2 procedure moves along a particular search constraint hyperplane (h) and uses a

rounding procedure to locate a solution yt satisfying constraint (h). If yt is feasible, then

we have four possible reasons to stop iterating along this search constraint:

Fl. y' = CP(FR), a ceiling point with respect to the feasible region (see Saltzman and

Hillier 1988, Definition 1). In this case, we have located relatively near t an element of

a class of points which contains an optimal solution (Saltzman and Hillier 1988, Theorem

1). Since it has been observed by Hillier (1969b, p. 640) that even for fairly large problems

5. Termination Criteria 20

there are relatively few solutions which are very close to being optimal, we stop iterating

in Phase 2 when ye passes the following sufficient condition for being a CP(FR): for some

i, t) - - ay' < mini laiiI. This condition is sufficient since, for all j, either yt + ej

or yt - ei violates (i).

F2. cTyt < cT Y for some prior iteration s E {, ... , t - 1}. In this case, it is likely (though

not necessary) that integer solutions y Yt+2,... found along this search direction on

subsequent iterations will have an objective function value no greater than that of one of

the previous iterations. A new search constraint hyperplane is tried next.

F3. cTyt = [iJ. While unlikely, it is possible for the feasible solution y' to be identified

as optimal by virtue of having an objective value as large as [J, the upper bound for the

value of the optimal solution of (ILP). (If not all cj are integer, use i instead of [14].)

F4. With y', we have identified what is believed to be an adequate number, say K 1, of

feasible solutions from which to launch Phase 3. Phase 2 is terminated

When y t is infeasible, another reason to stop iterating is:

V1. The sum of infeasibilities Eirv Is,(y')l has not decreased for say, K2 , consecutive

iterations. It appears that this search constraint hyperplane is not a fruitful one on which

to continue searching for 1-CP(FR)'s. A new search constraint hyperplane is tried next.

In addition, we also terminate our search along this search constraint hyperplane and

move to a new search constraint hyperplane if the number of iterations exceeds some limit

K 3. Finally, after K4 constraint hyperplanes have been searched in Phase 2, we proceed

to Phase 3. Other untried possibilities are (1) to move along the same search constraint

hyperplane but in a different search direction, and (2) to allow components of the search

direction d to change on different iterations. This second possibility might be beneficial

when moving along a search constraint hyperplane which suddenly becomes infeasible due

to the presence of another constraint not binding at 2.

Phase 3 is applied to each of the K 5 best feasible integer solutions found in Phase

2, working with one solution at a time. If Phase 3 is successful, stopping criteria F1 and

F3 could be applied to terminate Phase 3. However, since these criteria are not satisfied

6. Computational Experience 21

too frequently, we continue reapplying Phase 3 to the result of the previous iteration until

Phase 3 no longer makes progress. Other untried possibilities are (1) to change the first

component in the opposite direction from what is currently done, as in Hillier (1969a), and

(2) to change the first component over a range of integer values [-K6, K61, as in Echols

and Cooper (1968), increasing the amount of time spent in this phase over that spent by

the current method by a factor of 2K6.

6. Computational Experience

This section presents our computational experience with the Heuristic Ceiling Point

Algorithm, using the relevant parts of Crowder, Dembo, and Mulvey (1978, Appendix) as

a guide to reporting our results. Having already described our algorithmic approach, we

begin in the next subsection by describing its computer-based implementation. Subsection

6.2 discusses the experimental design, including the objective of the experiment, the origin

of all of the test problems used and the choice of performance indicators. Computational

results with the Heuristic Ceiling Point Algorithm are reported in subsection 6.3.

6.1. Computer Implementation

Computational testing of the algorithms was performed on a Digital Equipment Cor-

poration VaxStation II with ten megabytes of main memory, under the MicroVMS oper-

ating system, version 4.5. All of the code was written in Fortran and compiled with the

VAX Fortran Compiler, version 4.5, using the default settings that include an optimizer.

Real variables were declared as double precision variables. Groups of test problems were

submitted as a batch job in order to maintain consistent timing results.

A clock-reading routine due to Lustig (1987) returning CPU time in centiseconds

was employed to establish execution times of various parts of the code. Thus, execution

times reported for the Ceiling Point Algorithms are accurate to at most 0.01 CPU seconds.

6. Computational Experience 22

However, it is felt that this relatively small uncertainty in the timing can be safely ignored

in the following analysis. All execution times are given in CPU seconds. Those execution

times that apply specifically to the Heuristic Ceiling Point Algorithm include the time

required to read in the data but not to write out any information; those reported for other

algorithms may or may not include input/output time.

6.2. Experimental Design

The main objective of our computational testing was to assess whether or not the

heuristic methods for enumerating 1-ceiling points described in this report constitute a

practical approach for approximately solving general integer linear programming problems.

To assess the effectiveness of the Heuristic Ceiling Point Algorithm, we shall compare its

performance to those of other algorithms on a common set of test problems. It should

be emphasized that these computational results provide only a general indication of an

algorithm's performance rather than conclusive evidence because not only are we examining

performance based on a relatively limited amount of computational experience, but also the

algorithms have been coded by different authors, run on computers of different generations

and sizes, and 3o forth.

The 48 test problems taken from the literature have been grouped into two categories:

"realistic" (because these problems were drawn from real applications) and "randomly

generated" (because the parameters of these problems were randomly generated). Char-

acteristics of the sets of realistic and random test problems are shown in Tables II(a) and

II(b), respectively. The first two columns of each table give the size of the constraint

matrix (rows by columns) and the name by which we shall refer to each problem. Density

is simply the percentage of coefficients of the constraint matrix which are nonzero. A

negative entry in the column of optimal objective function values indicates that the prob-

lem originally was in the form of a minimization rather than a maximization. The last

two columns provide two measures of the distance between the optimal objective function

6. Computational Experience 23

Table 11(a). Realistic Test Problem Characteristics.

Optimal Value for Duality Gap
m x n Problem Density LPR: i ILP: z* Norm. (a) Pct. (6)

4 x 5 FC-1 70 8.79 7 1.032 20.5
4 x 5 FC-2 70 9.61 8 0.931 16.7
4 x 5 FC-3 70 11.81 10 1.046 15.3
4 x 5 FC-4 70 9.22 8 0.704 13.0
6 x 5 FC-5 53 88.61 76 7.279 14.2
6 x 5 FC-6 53 118.13 106 7.003 10.2
4 x 5 FC-7 70 88.61 76 7.279 14.2
4 x 5 FC-8 70 118.13 106 7.003 10.2
6 x 6 FC-9 50 12.00 9 1.732 25.0

10 x 12 FC-10 50 18.71 17 0.698 9.1
7 x 7 IBM-1 57 -7.50 -8 0.189 6.7
7 x 7 IBM-2 57 -5.75 -7 0.472 20.7
3 x 4 IBM-3 100 -179.78 -187 0.271 4.0

15 x 15 IBM-4 53 -9.25 -10 0.194 7.5
15 x 15 IBM-5 53 -12.88 -15 0.549 16.3
11 x 10 AL-55 18 50.30 50 0.008 0.6
11 x 10 AL-60 18 54.50 52 0.063 4.6
11 x 10 AL-65 18 58.67 57 0.042 2.9
11 x 10 AL-70 18 62.83 62 0.021 1.3
11 x 10 AL-75 18 67.00 67 0.000 0.0
11 x 10 AL-80 18 70.60 68 0.065 3.7
11 x 10 AL-85 18 74.20 70 0.105 5.7
11 x 10 AL-90 18 77.80 75 0.070 3.6
11 x 10 AL-100 18 85.00 85 0.000 0.0

(') Gives the normalized duality gap: D(i,x*) = (cTi - cTX*)/Ic112.
(Gives the duality gap in % terms: 100 x (cT - cTx*)/CTt.

6. Computational Experience 24

Table 11(b). Randomly Generated Test Problem Characteristics.

Optimal Value for Duality Gap
m x n Problem Density LPR : z ILP: z* Norm. (a) Pct. (b)

15 x 15 I-I 100 2956.1 2893 0.384 2.1
15 x 15 1-2 100 2650.8 2570 0.573 3.0
15 x 15 1-5 100 6356.0 6171 1.117 2.9
15 x 15 1-6 100 2289.1 2234 0.333 2.4
15 x 15 11-1 100 1896.3 1875 0.091 1.1
15 x 15 11-2 100 1758.8 1725 0.178 1.9
15 x 15 11-3 100 2029.9 1983 0.189 2.3
15 x 15 11-4 100 2478.0 2429 0.220 2.0
15 x 15 11-5 100 1574.8 1558 0.079 1.1
15 x 15 11-6 100 1575.5 1556 0.083 1.2
15 x 15 11-7 100 2088.0 2056 0.147 1.5
15 x 15 11-8 100 1592.8 1548 0.199 2.8
15 x 15 11-9 100 1756.8 1743 0.063 0.8
15 x 15 11-10 100 1764.7 1734 0.137 1.8
30 x 15 11-11 100 1522.5 1491 0.129 2.1
30 x 15 11-12 100 1449.9 1424 0.138 1.8
15 x 30 11-13 100 1811.6 1785 0.092 1.5
15 x 30 11-14 100 2337.4 2309 0.089 1.2

6 x 21 II-M 100 643.0 594 0.181 7.6
15 x 15 111-2 53 110.7 99 0.055 10.6
15 x 15 111-3 48 144.5 130 0.061 10.0
15 x 15 111-4 50 124.3 92 0.157 27.6
15 x 15 I1-5 45 119.5 97 0.097 18.8
15 x 15 111-8 49 123.3 113 0.054 8.4

(Gives the normalized duality gap: D(.,,x*) (i - z*)/1c112.
(Gives the duality gap in % terms: 100 x (i - z*)/i.

6. Computational Experience 25

values for (ILP) and (LPR). The first measure is the normalized duality gap,

(i, x*) _ (ci - cTz)/c1 2 ,

where icI12 is the Euclidean norm of c. This quantity measures the Euclidean distance

between the optimal objective function hyperplanes for (ILP) and (LPR), i.e., between

cTx = t and cTX = z*. It is a reasonably good guide for indicating the difficulty of the

problem: the larger the normalized duality gap, generally the more difficult it is to find

an optimal integer solution and prove its optimality. The second measure is the duality

gap in percentage terms, 100 x (cTi - cTh*)/cTi, which provides some perspective on

the importance of actually finding an optimal integer solution for a particular problem

once a good feasible solution has been discovered. An integer solution found to be within

some small percentage of the optimal LP-relaxation objective function value may be "close

enough" for all practical purposes.

All 24 of the realistic problems appeared in the study by Trauth and Woolsey (1969).

These consist of ten fixed-charge problems, {FC-1, FC-2,..., FC-10}, five of the IBM test

problems, {IBM-1, IBM-2,..., IBM-5}, and nine allocation problems, {AL-55, AL-60,...,

AL-100}. The set of allocation problems are all the same 0-1 knapsack problem except

that the right hand side increases from 55 to 100. It should be noted that the LP-relaxations

associated with two of the allocation problems, AL-75 and AL-100, possess an all-integer

optimal solution. Thus, AL-75 and AL-100 are solved immediately by the Heuristic Ceiling

Point Algorithm but are included in this study in order to compare our results more

completely with those reported elsewhere. The fixed-charge and IBM problems were first

published by Haldi (1964) and, though small, are "hard" to solve in the sense that the

optimal solutions for (ILP) and (LPR) are relatively far apart, as indicated by large values

of the normalized duality gap. Characteristic of the fixed-charge problems is that simple

rounding of i almost never yields a feasible integer solution.

With one exception, all 24 of the problems with randomly generated coefficients have

been taken from Hillier's study (1969b) and are fully specified in Hillier (May 1969). These

problems are labeled as {I-1, 1-2, 1-5, 1-6, {II-1, 11-2,..., 11-14) and {III-2,..., 111-5, III-8}.

Their integer coefficients were generated from a uniform distribution over the intervals

6. Computational Experience 26

shown in the Table III. The one additional problem (labeled "II-M") is similar to a Type

II problem except that the b,'s are smaller. Originally proposed as a 0-1 problem in

Markowitz and Manne (1957), II-M was solved as a general integer problem in Land and

Doig (1960) as it is here.

Table III. Coefficient Ranges for Randomly Generated Test Problems.

Problem Type
I II III

C -20,79 [0, 99] [0,99]
a__ [-40, 591 [0, 99]0, 1]

b_ [500,999 [1000,19991 1
I general general binary

With large values of the right hand sides (bi's) and with constraint matrices which are

essentially 100 percent dense, the Type I and Type II problems are not easy to solve. The

Type I problems are especially tough because approximately 40 percent of their constraint

coefficients are negative, while the other 60 percent are positive. The Type III problems, on

the other hand, are not particularly challenging. As shown in Table II(b), the normalized

duality gap for a typical Type I problem is roughly two to three times as large as that for

an average Type II problem which, in turn, is about twice that for a Type III problem.

It seems appropriate to evaluate heuristic algorithms based on two indicators of per-

formance: the quality of the best solution found (XH) and the CPU time spent in locating

ZH. Measuring quality without considering CPU time, or vice-versa, is misleading because

an algorithm which spends a large amount of time to find a good suboptimal solution is

not necessarily an efficient algorithm nor is one which finds a low-quality solution rather

quickly. As a measure of the quality of a reported solution y, we often use the normalized

deviation of y from an optimal solution x*, i.e.,

D(y, x') =_ (cTV)/1cll 2 ,

where 11cI12 is the Euclidean norm of c. The normalized deviation measures the Euclidean

distance of y to the hyperplane c2 z -- cT*

6. Computational Experience 27

For algorithms which solve the (LPR) associated with (ILP), an alternative to simply

reporting CPU time is to examine the ratio of total CPU time to CPU time required to

solve the LP-relaxation. This ratio gives an idea of how much work is required by the

entire algorithm in relation to a relatively efficient and dependable algorithm (the simplex

method) used in the first phase of the algorithm to solve (LPR). It also provides a crude

basis of comparison for LP-based algorithms which perhaps have been coded in different

languages and/or tested on different types of computers. With this measure, various al-

gorithms' execution times are normalized by the amount of time to solve (LPR). It must

be emphasized, however, that the LP solvers embedded within the respective integer pro-

gramming algorithms may have been designed and implemented quite differently, causing

such comparisons to be rather rough.

6.3. Results with the Heuristic Ceiling Point Algorithm

Tables IV(a) and IV(b) describe the performance of the various phases of the Heuristic

Ceiling Point Algorithm on the realistic and randomly generated test problems, respec-

tively. The second, third and fourth columns of each table give the fraction of the total

CPU time spent in solving (LPR), in Phase 2 and in Phase 3, respectively, of the Heuristic

Ceiling Point Algorithm, where solving (LPR) may be thought of as Phase 1. Recall that

Phase 2 seeks feasible 1-CP(i)'s by moving along the surface of a constraint hyperplane

binding at i and rounding to nearby integer solutions. The Phase 3 procedures alter either

one or two components of a feasible integer solution found in Phase 2 in an attempt to lo-

cate a better 1-CP(FR). The last two columns give the quality of the best solution known

by the end of Phases 2 and 3, respectively, as measured by their normalized deviation from

optimality.

The Heuristic Ceiling Point Algorithm performed quite well on all three classes of

realistic problems, locating an optimal solution for over half of the difficult FC and IBM

test problems, and for all of the AL problems. Altogether, the Heuristic Ceiling Point

Algorithm found an optimal solution for 16 of the 22 test problems which did not possess

6. Computational Experience 28

Table IV(a). Performance of Ceiling Point Heuristic Algorithm.

on Realistic Problems.

% of Total CPU time Total Quality
Problem LPR Phase 2 Phase 3 CPU time Phase 2(a) Phase V)

FC-1 66.7 14.3 19.0 0.21 0.000 0.000
FC-2 72.7 18.2 9.1 0.22 0.000 0.000
FC-3 81.3 12.5 6.2 0.16 0.000 0.000
FC-4 81.2 6.3 12.5 0.16 0.000 0.000
FC-5 48.4 35.5 16.1 0.31 1.154 0.577
FC-6 51.7 41.4 6.9 0.29 1.732 0.577
FC-7 46.4 32.1 21.4 0.28 1.154 0.577
FC-8 51.7 41.4 6.9 0.29 1.732 0.577
FC-9 77.3 18.2 4.5 0.22 0.000 0.000

FC-10 32.6 61.8 5.6 0.89 0.816 0.816
IBM-1 65.6 18.8 15.6 0.32 1.134 0.378
IBM-2 57.9 7.9 34.2 0.38 0.378 0.000
IBM-3 68.2 13.6 18.2 0.22 0.075 0.000
IBM-4 24.2 49.8 26.0 2.69 0.258 0.000
IBM-5 23.8 10.9 65.2 2.56 1.033 0.000
AL-55 27.5 64.2 8.3 1.09 0.375 0.000
AL-60 64.4 24.4 11.1 0.45 0.000 0.000
AL-65 46.9 18.8 34.4 0.64 0.125 0.000
AL-70 43.3 17.9 38.8 0.67 0.250 0.000
AL-75 100.0 0.0 0.0 0.28 0.000 0.000
AL-80 46.8 22.0 32.2 0.62 0.025 0.000
AL-85 46.9 20.3 32.8 0.64 0.075 0.000
AL-90 45.2 21.0 33.8 0.62 0.200 0.000

AL-100 100.0 0.0 0.0 0.29 0.000 0.000
(a) D(x 2,x) (CTX2 cTXI)/IeC11 2, where X2 is best Phase 2 solution.

0) D(zH, x) (CTxH - cTx*)/IC11 2, where xH is best Phase 3 solution.

6. Computational Experience 29

Table IV(b). Performance of Ceiling Point Heuristic Algorithm.

on Randomly Generated Problems.

% of Total CPU time Total Quality

Problem LPR Phase 2 Phase 3 CPU time Phase 2a) Phase 3)

I-1 32.9 20.1 47.0 1.64 1.863 0.524
1-2 13.9 13.7 72.4 3.37 1.788 0.447
I-5 11.1 24.8 64.1 4.04 4.689 0.990
1-6 22.1 17.6 60.3 2.22 0.018 0.018

Il-1 30.8 14.0 55.2 1.43 0.172 0.172
11-2 43.7 16.5 39.8 1.03 0.734 0.000
11-3 41.0 13.9 45.1 1.22 0.337 0.000
11-4 36.9 17.1 46.0 1.11 0.448 0.013
11-5 34.8 14.4 50.9 1.18 0.183 0.000
11-6 18.4 8.6 73.0 2.33 0.402 0.000
11-7 41.7 17.5 40.8 1.03 0.557 0.018
11-8 44.7 18.4 36.9 1.03 0.820 0.066
11-9 31.3 12.0 56.7 1.50 0.228 0.036

11-10 22.8 9.7 67.5 1.97 0.205 0.008
lI-11 21.1 8.8 70.1 3.31 0.135 0.012
11-12 34.4 14.2 51.4 2.18 1.022 0.079
11-13 22.9 22.6 54.4 3.40 0.373 0.000
11-14 10.3 9.3 80.4 7.94 0.723 0.000
II-M 30.5 24.2 45.3 0.95 0.495 0.111
111-2 49.0 22.0 29.0 1.00 0.014 0.000
111-3 37.5 55.0 7.5 1.20 0.064 0.000
111-4 25.3 56.0 18.7 1.50 0.000 0.000
II1-5 56.3 32.4 11.3 0.71 0.000 0.000
111-8 52.9 25.0 22.1 0.68 0.000 0.000

(a) D(X 2 ,X*) - (cTX 2 -cTX*)/IICI 2, where X2 is best Phase 2 solution.

() D(xH, x*) -- - cTX*)/ lC 2 , where xH is best Phase 3 solution.

6. Computational Experience 30

an all-integer 2 (without proving optimality). In the remaining six problems, the best

solution found by the Heuristic Ceiling Point Algorithm at the end of Phase 3 differed in

objective function value from optimality by at most two in absolute value, although these

gaps appear to be fairly large in terms of normalized deviation. Phase 2 managed to locate

an optimal solution for 6 of the problems. For all 16 of the remaining problems, the Phase

3 procedures were effective, locating an optimal solution for 10 of these problems. In terms

of CPU time, both Phase 2 and Phase 3 required less time than that required to solve the

LP-relaxation on all but four of the problems {FC-10, IBM-4, IBM-5, AL-55}.

On the randomly generated problems, the Heuristic Ceiling Point Algorithm per-

formed reasonably well overall, but the level of success varied noticeably with the type of

problem. It located an optimal solution for all five of the Type III problems, for six of the

fifteen Type II problems, but for none of the more difficult Type I problems. Altogether,

the Heuristic Algorithm found an optimal solution for 11 of the 24 randomly generated test

problems. In the remaining 13 problems, the normalized deviation from optimality of the

best solution found was relatively small on all but one (11-1) of the Type II problems, but

rather large on all but one (1-6) of the Type I problems. Here, Phase 2 managed to locate

an optimal solution for only 3 of the 24 test problems, all of Type III. Phase 3 proved to

be effective on 19 of the 21 remaining problems, locating an optimal solution for 8 of these.

While Phase 2 never required more time than that needed to solve (LPR), at least on

Type I and Type II problems, the reverse is true of Phase 3, i.e., Phase 3 always required

more CPU time than that needed to solve (LPR) for Type I and Type II problems. In

general, we would expect the fraction of total time spent in Phase 3 to increase as the

number of variables (n) increases since the execution time of Phase 3 (which calls upon

the two-variable change routine TWOVAR) seems to grow with the square of n, while that

of the simplex method and of Phase 2 grow more or less linearly with n.

Kochenberger, McCarl and Wyman (1974) are responsible for the only published

results known to the authors of a heuristic algorithm being applied to a majority of the

realistic test problems from Trauth and Woolsey (1969). Since only averaged results for

each class of problems are presented in Kochenberger, McCarl and Wyman (1974), we

decided to run the test problems with a widely available package called the Generalized

6. Computational Experience 31

Algebraic Modeling System (GAMS, Version 2.04) developed by Brooke, Kendrick and

Meeraus (1988). When faced with a mixed integer linear programming problem, GAMS

calls upon the Zero/One Optimization Methods (ZOOM/XMP, Version 2.0) developed by

Roy Marsten. In brief, ZOOM converts every (bounded) general integer variable into a

sum of binary variables and applies the Pivot & Complement heuristic device of Balas and

Martin (1980) to find an initial solution. It then proceeds with an LP-based branch-and-

bound scheme. Fairly tight upper bounds on the variables were specified in order to keep

the number of binary variables relatively small. These are given in Appendix A, along

with the specified values of the GAMS/ZOOM run-time options. The performances of

the Pivot & Complement heuristic scheme employed by GAMS/ZOOM and the Heuristic

Ceiling Point Algorithm (HCPA) are shown in Table V(a). Entries in the column labeled
"ezM" give the objective function value of the best solution found by the heuristic algorithm,

while those in the column labeled "% Opt." represent the percentage deviation of zH from

the optimal objective function value z*, defined to be 100 x [1 - J(z* - ZH)/z*].

The next table, Table V(b), compares the performance of the Heuristic Ceiling Point

Algorithm with that of two other heuristic algorithms on the set of randomly generated

problems. The first is again the Pivot & Complement heuristic of GAMS/ZOOM while

the second is due to Hillier (1969a). Both the Heuristic Ceiling Point Algorithm and

GAMS/ZOOM were executed on the VaxStationII microcomputer whereas Hillier's algo-

rithm was executed on an IBM-360/67 mainframe computer. A knowledgeable computer

scientist informed us that these two machines perform roughly the same number of op-

erations per second, despite vast differences in age and architecture (Saunders, 1988). In

contrast to the Heuristic Ceiling Point Algorithm, Hillier's heuristic procedure (1-2A-1)

seeks feasible integer solutions while moving along a path strictly interior to the feasible

region. On the Type I problems, Hillier's procedure appears to enjoy much greater suc-

cess than the Heuristic Ceiling Point Algorithm both in terms of the quality of its best

solution and the speed with which it finds this solution. On the Type II and Type III

problems, these two algorithms are about equally successful in terms of the quality of the

best solution found. However, based on the ratios of total CPU time to CPU time spent

solving (LPR), Hillier's procedure is probably much faster than the Heuristic Ceiling Point

6. Computational Experience 32

Table V(a). Comparison of Heuristic Algorithms on Realistic Problems.

HCPA GAMS/ZOOM
VaxStation II VaxStation II

Problem CPU time zH % Opt. CPU time zH % Opt.
FC-1 0.21 7 100.0 1.27 6 85.7
FC-2 0.22 8 100.0 1.40 7 87.5
FC-3 0.16 10 100.0 1.27 8 80.0
FC-4 0.16 8 100.0 1.29 6 75.0
FC-5 0.31 75 98.7 2.22 66 86.8
FC-6 0.29 105 99.1 2.08 80 75.5
FC-7 0.28 75 98.7 2.18 66 86.8
FC-8 0.29 105 99.1 2.04 80 75.5
FC-9 0.22 9 100.0 1.58 8 88.9

FC-10 0.89 15 88.2 4.90 13 76.5
IBM-I 0.32 -9 87.5 1.52 -12 50.0
IBM-2 0.38 -7 100.0 1.94 -10 57.1
IBM-3 0.22 -187 100.0 1.38 -187 100.0
IBM-4 2.69 -10 100.0 5.86 -12 80.0
IBM-5 2.56 -15 100.0 4.94 -16 93.3
AL-55 1.09 50 100.0 0.84 50 100.0
AL-60 0.45 52 100.0 0.67 52 100.0
AL-65 0.64 57 100.0 0.93 55 96.5
AL-70 0.67 62 100.0 0.87 57 91.9
AL-75 0.28 67 100.0 0.34 67 100.0
AL-80 0.62 68 100.0 0.68 68 100.0
AL-85 0.64 70 100.0 0.81 70 100.0
AL-90 0.62 75 100.0 0.86 72 96.0

AL-100 0.29 85 100.0 0.31 85 100.0

I.

6. Computational Experience 33

Table V(b). Comparison of Heuristic Algorithms on Randomly Generated Problems.

HCPA CAMS/ZOOM Hillier (1969a)
VaxStation II VaxStation II IBM-360/67

Problem Quality Ratio Quality Ratio Quality Ratio
I-1 0.524 3.0 2.887 26.9 0.000 1.2
1-2 0.447 7.2 4.258 38.1 0.184 1.2
I-5 0.990 9.0 7.447 60.5 0.229 1.4
1-6 0.018 4.5 0.672 35.3 0.279 1.2

lI-1 0.172 3.3 3.180 50.8 0.172 1.3
11-2 0.000 2.3 0.955 43.5 0.000 1.4
11-3 0.000 2.4 2.373 34.2 0.032 1.9
11-4 0.013 2.7 2011 48.0 0.013 1.3
11-5 0.000 2.9 0.502 38.3 0.000 1.3
11-6 0.000 5.4 0.137 56.0 0.000 1.3
11-7 0.018 2.4 1,197 36.7 0.018 1.4
11-8 0.066 2.2 1.640 39.9 0.000 1.7
11-9 0.036 3.2 0.173 45.8 0.036 1.6

11-10 0.008 4.4 2.741 36.7 0.000 1.4
II-11 0.012 4.7 0.012 1.1
11-12 0.079 2.9 0.000 1.2
11-13 0.000 4.4 0.131 2.0
11-14 0.000 9.7 0.110 2.0
II-M 0.111 3.3
111-2 0.000 2.0 0.000 4.6 0.000 1.3
111-3 0.000 2.7 0.064 2.9 0.000 1.2
111-4 0.000 4.0 0.170 5.6 0.000 1.2
111-5 0.000 1.8 0.129 7.2 0.000 1.2
111-8 0.000 1.9 0.187 6.3 0.000 1.3

Quality = D(a9,XH) = (CTX * - cT "H)/IIc1 2.
Ratio = (Total CPU time)/(CPU time solving LPR).

6. Computational Experience 34

Algorithm, perhaps by a factor of two or three. Ibaraki, Ohashi and Mine (1974) report

achieving good solutions with their interior-path heuristic methods on six of the test prob-

lems, although probably at a much greater computational cost than that required by the

Heuristic Ceiling Point Algorithm, judging by the ratios of total time to LP solution time.

Average statistics by problem class are shown in Table V(c) for the algorithm of

Kochenberger, McCarl and Wyman (1974), as well as those for the Heuristic Ceiling Point

Algorithm, the Pivot & Complement heuristic scheme of GAMS/ZOOM and the (1-2A-1)

procedure of Hillier. For all three classes of realistic test problems, the Heuristic Ceil-

ing Point Algorithm typically finds higher-quality solutions than does the algorithm of

Kochenberger, McCarl and Wyman, but possibly at greater computational effort. Unfor-

tunately, Kochenberger, McCarl and Wyman did not specify the type of computer used in

their study. The Heuristic Ceiling Point Algorithm also appears to be more effective than

the Pivot & Complement procedure employed by GAMS/ZOOM for all classes of prob-

lems (realistic and randomly generated) based on both speed and the quality of solution

achieved. In fact, the Pivot & Complement heuristic scheme appears to be competitive

with the other algorithms only on the (0-1) AL and Type III problems. Since its perfor-

mance on the first ten Type II problems was not very strong, no attempt was made to

apply GAMS/ZOOM to the five larger Type II problems {II-11,..., 11-14, II-M}. On the

randomly generated test problems as a whole, Hillier's heuristic procedure seems to be

the most effective algorithm judging by both the ratios of total time to time spent solving

(LPR) and solution quality.

7. Summary

In this report, we have described a heuristic algorithm which searches for high-quality

feasible 1-ceiling points in the neighborhood of i. In contrast to the heuristic algorithms

of Hillier (1969a), Ibaraki, Ohashi and Mine (1974) and Faaland and Hillier (1979), all of

which search along paths strictly interior to the feasible region of (LPR), our search pro-

7. Summary 35

Table V(c). Summary of Performances by Heuristic Algorithms.

HCPA GAMS/ZOOM Kochenberger, et al.
VaxStation II VaxStation II (1974)

Class Time % Opt. Time % Opt. Time % Opt.
FC 0.30 98.4 2.02 81.8 0.13 94.4

IBM 1.23 97.5 3.13 76.1 1.59 70.0
AL 0.59 100.0 0.68 98.3 0.59 86.7

HCPA GAMS/ZOOM Hillier (1969a)
VaxStation II VaxStation II IBM 360/67

Class Ratio Quality Ratio Quality Ratio Quality
I 5.9 0.495 40.2 3.816 1.3 0.173

II 3.7 0.034 43.0 1.491 1.5 0.037
III 2.5 0.000 5.3 0.110 1.2 0.000

ceeds by moving away from i along the surface of the feasible region, periodically rounding

from a continuous solution to a nearby integer solution. Once a feasible integer solution is

found, one or two components of this solution are modified (sometimes repeatedly) in an

attempt to find a feasible 1-ceiling point better than this solution.

In our computational experience, the Heuristic Ceiling Point Algorithm was generally

quite successful in finding high-valued solutions. For 16 of the 22 realistic test problems

taken from the literature which did not possess an all-integer ', our algorithm located an

optimal solution (without verifying its optimality), usually in about the same amount of

time as that required to solve the LP-relaxation. For all but two of the 20 Type II and

Type III randomly generated test problems, an optimal or very high quality solution was

found. However, a really good solution was identified for only one of the four Type I prob-

lems. Averaged over the classes of randomly generated test problems, the ratios of total

CPU time to time spent solving the LP-relaxation ranged from 2.5 to 5.9. On the realistic

test problems, the Heuristic Ceiling Point Algorithm typically found better solutions than

both the 0-1 Pivot & Complement procedure employed by GAMS/ZOOM and the general

integer algorithm of Kochenberger, McCarl and Wyman (1974) and certainly did so more

quickly than GAMS/ZOOM. On the randomly generated test problems, the Heuristic Ceil-

7. Summary 36

ing Point Algorithm again dominated the performance of Pivot & Complement; however,

considering both average speed and solution quality, it was outperformed by the general

integer method of Hillier (1969a). Overall, we feel that the Heuristic Ceiling Point Algo-

rithm does hold potential as a practical approach for approximately solving pure, general

integer linear programming problems. A subsequent report will show how several aspects

of this algorithm can be incorporated into an exact algorithm for solving (ILP).

References 37

Balas, E. and C. Martin, "Pivot and Complement: A Heuristic for 0-1 Programming,"

Management Science, 26, 1 (1980), 86-96.

Brooke, A., D. Kendrick and A. Meeraus, CAMS: A User's Guide, The Scientific Press,

Redwood City, Calif., 1988.

Crowder, H., R. Dembo and J. Mulvey, "Reporting Computational Experiments in Math-

ematical Programming," Mathematical Programming, 15 (1978), 316-329.

Echols, R. and L. Cooper, "Solution of Integer Linear Programming Problems by Direct

Search," Journal of the Association for Computing Machinery, 15 (1968), 75-84.

Faaland, B. and F. Hillier, "Interior Path Methods for Heuristic Integer Programming

Procedures," Operations Research, 27, 6 (1979), 1069-1087.

Garfinkel, R. and G. Nemhauser, Integer Programming, John Wiley, New York, 1972.

Glover, F., "Convexity Cuts and Cut Search," Operations Research, 21, 1 (1973), 123-134.

Haldi, 3., "25 Integer Programming Test Problems," Working Paper No. 43, Graduate

School of Business, Stanford Univesity, Stanford, Calif., December 1964.

Hillier, F., "Efficient Heuristic Procedures for Integer Linear Programming with an Inte-

rior," Operations Research, 17 (1969a), 600-637.

Hillier, F., "A Bound-and-Scan Algorithm for Pure Integer Linear Programming with

General Variables," Operations Research, 17 (1969b), 638-679.

Hillier, F., "A Bound-and-Scan Algorithm for Pure Integer Linear Programming with

General Variables," Technical Report No. 11, Dept. of Operations Research, Stanford

University, Stanford, Calif., May 1969.

Ibaraki, T., T. Ohashi and H. Mine, "A Heuristic Algorithm for Mixed-Integer Program-

ming Problems," Math. Programming Study 2, (1974), 115-136.

Kochenberger, G., B. McCarl and F. Wyman, "A Heuristic for General Integer Program-

ming," Decision Sciences, 5, 1 (1974), 36-44.

Land, A. and A. Doig, "An Automatic Method of Solving Discrete Programming Prob-

lems," Econometrica, 28 (1960), 497-520.

References 38

Lee, J. S. and M. Guignard, "An Approximate Algorithm for Multidimensional Zero-One

Knapsack Problems - A Parametric Approach," Management Science, 34, 3 (1988),

402-410.

Lustig, I., "Comparisons of Composite Simplex Algorithms," Technical Report SOL 87-8,

Dept. of Operations Research, Stanford University, Stanford, Calif., June 1987.

Markowitz, H., and A. Manne, "On the Solution of Discrete Programming Problems,"

Econometrica, 25 (1957), 84-110.

Muller-Merbach, H., "Heuristics and Their Design: A Survey," European Journal of Op-

erational Research, 8 (1981), 1-23.

Saltzman, R., "Ceiling Point Algorithms for General Integer Linear Programming," un-

published Ph.D. dissertation, Dept. of Operations Research, Stanford University,

Stanford, Calif., December 1988.

Saltzman, R., and F. Hillier, "The Role of Ceiling Points in General Integer Linear Pro-

gramming," Technical Report SOL 88-11, Dept. of Operations Research, Stanford

University, Stanford, Calif., August 1988.

Saunders, M. A., private communication, November 3, 1988.

Taha, H., Integer Programming: Theory, Applications and Computations, Academic Press,

New York, 1975.

Trauth, C., and R. Woolsey, "Integer Linear Programming: A Study in Computational

Efficiency," Management Science, 15 (1969), 481-493.

Appendix A: Bounds and Options Used in GAMS/ZOOM Runs 39

In order for GAMS/ZOOM to convert each general integer variable into a sum

of binary variables, a reasonably tight upper bound was specified for each general

integer variable, as shown in Table VI. The number n' of binary variables in the

transformed problem is given in the last column.

Table VI. Upper Bounds Specified in the GAMS/ZOOM Runs.

Problem/Class Upper Bounds n'

FC-1,...,FC-4 zi < 1, j = 1,2; xi1 10, j = 3, ...,5 14
FC-5,...,FC-8 xj < 1, j = 1,2; xj _< 100, j = 3, ...,5 23

FC-9 xj 1, j=1,...,3; xi :10, = 4,...,6 15
FC-10 x, 1, j =1,..,6; xi _< 15, j 7,...,12 30

IBM-1, IBM-2 xj _57, j ,.,7 21

IBM-3 xi , 31, j 1,...,4 20
IBM-4, IBM-5 Xi _ 3, j =1 15 30

AL x <1, j = 10 10
Types I & II* xj 5 31, j =1 15 75

I-5 xj 3 50, j 1 15 90
Type III xi < 1, j 1 15 15

* except I-5

GAMS/ZOOM Options specified in every Program file "PROBLEM.GMS"

OPTCA = 0.0
OPTCR = 0.001 (0.020 for all Type II problems)

CAMS/ZOOM Options listed in Specs file "GAMSZOOM.SPC"

BRANCH = YES
DIVE = YES
EXPAND = 3
HEURISTIC = YES
INCUMBENT = -1000 (+1000 for IBM problems)
MAX SAVE = 5
PRINT CONTINUOUS = 0
PRINT HEURISTIC = 0
PRINT BRANCH = 0
PRINT TOUR = 0
QUIT = NO
SELECT = 2

All other options assumed their default values. A preliminary run was made for
each test problem with PRINT HEURISTIC = 1 in order to find zH = cTXH.

Appendix B: Listing of Fortran Code Implementation 40

Listing of Fortran Code Implementation of
the Heuristic Ceiling Point Algorithm

for General Integer Linear Programming

C PLIST.FOR: uun(nn) - maximum value of M(N) Put into all routines

IMPLICIT REAIk*8 (A-H,O-Z)
parameter (mm-37, nn-31, tol-2.10734D-08, bigm-l.D5,

- maxit-75, one-l.DO, zero-O.DO)

C COMLPI.FOR: Global vars. created/used in LP routines

dimension A(mn, nn) , B (u) ,C (nn) ,INDCT (nu),
- ABAR (mm,nn+mm+mm+l) ,ABAL Cnn, nf),
- ibasis (mm) ,nonbas (nn+un) ,indbas (nn+mm+nun) ,initbv (mm),
- NPIV(2),XBAR(nn+num+m),XO (nn) ,signac(mm,nn) ,
- dir3(nn,nn) ,CTXPT(nn,mm),BFCXO (mm) ,PRICES (nn)

common/clpl/A,B,C, INDCT, INDOBJ,M,N,
- ABAR,ABAL,ibasis,nonba3,indbas,NPIV,XBAR,XO,ZO,IR,IS,
- signac,nx,dirs,ctxpt,BFCXO,PRICES

logical*2 indbas, signac,ctxpt,BFCXO

C COMHRUN.FOR: Global vars. used in HRUN routines
dimension FIS3 (mm, l+nn) ,RATES (nn) ,SDIR (nl) ,CTVAL (nu)
common/chrun/ffeas, FIS3,pct~l,RATES, SDIR, ncp,CTVAL
logical*2 ffeas,ncp

C COMRUN1.FOR: Global vars. primarily used in RUN
real*8 RTIMES(-l:30),RPCTS(-l:30),RVALS(-1:30),

AIMIN (nn) ,AIMAX (mm)
integer IXSTAR(nn) ,CORDER(nn) ,VARORD Cnn)
corinon/crunl/IXSTAR, ZSTAR, AIMIN,AIMAX, ZUP,ALL,

RTIMES,RPCTS, RVALS,CORDER,VARORD

C COMXRUN2.FOR: Global vars. used in XRUN and RUNCUT
Dimension LAMDA(nn), ALPHA(nn,nn), P(nn,nn), SUB(nn)
Dimension LOBD(nn),UPBD(nn),LONS(nn),UPNS(nn),CUT(nn+l)
common/cxrun2/LAMDA, ALPHA, P, SUB, LOBD,UPBD, LONS,UPNS,CUT
integer LOBD,UPBD, LONS,UPNS, SUB
real*8 LAMDA

C COMXRUN3.FOR: Global vars. used in XRUN
integer irange Cnn) ,icase
real*8 CMPMIN(rnm,nn+l) ,RA(rru,nn),AXINC(mmn,nn),

- LL(mm+l,nn) ,UU(mm+l,nn) ,sizlim,callim,xcalls Cnn)
commnon/cxrun3/irange, icase,LL,UU,CMPMIN,RA,AXINC,

- sizlim, callim, xcall3

C COMXRUN4.FOR: More XRUN global vars., especially XCP-related routines
integer LJ,first(nn),final(nn),inc(nn) ,newz(nn),

loc nn) ,upc(nn) ,ISN Cnn)

real*8 gap(mm,nn+l)
common/cxrun4/gap,LU, first, final,inc, newz, bc, upc,

ISN, minarg, maxarg

C COMPRT.FOR: Print Switches

cormon/cprint/hprint, xprint
integer*2 hprint (25) ,xprint (25)

C COMIO.FOR: I/0 files
common/cinout/infile, iorun, iohrun, iocut, ioxrun, iolp

character*64 infile, iorun, iohrun, iocut, ioxrun, iolp

4'

C-------------- -------------------

c By Robert M4. Saltzman
C

c Applies the Heuristic Ceiling Point Algorithm to each problem
c listed in the file ILPDATA.DAT.
CT ~c Parenthetical comments with Section numbers refer to parts Of:
c Saltzman, R., "Ceiling Point Algorithms for General Integer
c Linear Programmving," unpublished Ph.D. dissertation, Dept. of
c Operations Research, Stanford University, Stanford, Calif.,
c December 1988.
C--

C

include 'SDISK2: CSALTZ.ILP1]plist.for'
include '$DISK2: CSALTZ.ILP1]comio for
include '$DISK2: rSALTZ.ILP1]comprt.for'
include 'SDISK2: (SALTZ.ILPl1comxrun3.forI
open(2,file-'$DISK2: (SALTZ.ILPllilpdata.dat', status-'old')
open(5,file-'$DISK2: (SALTZ.ILPl1outhrun.dat', status'-'unknown')
open(6,file-'$DISK2: [SALTZ.ILPl1outrun.dat', status-'unknown')
open(22,file-'$DISK2: [SALTZ.ILP1jswitches.dat',status-'oldl)

c
c Read in print switches and run-time options

read(22,*) (hprint(j),J-l,25)
read(22,*) (xprint(j),J-1,25)
read(22, *) sizlim,callim
write(*,*) 'sizlim,callim ',sizliM,CalliMn

c
c Headlines for Heuristic Summuary report, if desired

if (hprint(19) .eq. 1) then
write(5,*)Ilieuristic Ceiling Point Algorithm Summary'
write(5,*)'I
write(5,*) 'Problem LP ZO Set+Ph.1 Z '

- Phase2 Z Phase3 Z Total Ratio'
write(5,*)' -- - --- -- - -

endif
c
c Loop through all problems specified in ILPDATA.DAT

do 8100 ip - 1, 40
c Get the name of the input data file, e.g., HALD15.DAT

readC2,8105) infile
if (infile(1:3) .eq. 'end') goto 8150
if (infile(1:3) .eq. 'END') goto 8150
write (,) Starting problem *** ,infile

c
call RUN

C

write (,) Finished problem ***',infile

8100 continue
8105 format (All)
8150 continue

stop
end

42

c

subroutine RUN
c
c Runs Heuristic Ceiling Point Algorithms for 1 problem
c (Overview of entire algorithm given in Section 5.5)

c

include '$DISK2: [SALTZ.ILPl]plist.for'
include '$DISK2: [SALTZ.ILP1]comio.for
include '$DISK2: [SALTZ.ILPl comlpl.for'

include '$DISK2: [SALTZ. ILPl]comprt .for'
include '$DISK2: (SALTZ.ILP1]comrunl.for'
include '$DISK2: (SALTZ.ILPllcomxrun4.for'
integer izz(5)

C
open(4,file-'$DISK2: [SALTZ.ILP1]outlp.dat', status-'unknown')
open (8, file-' $DISK2: [SALTZ. ILP1] outruncut .dat' ,status-'unknown')
open(9,file-'$DISK2: [SALTZ.ILP1]outxrun.dat', status-'unknown')

c
c Initialize clock reading routines and summary values

call XTIMER(0,0,0)
do 8001 1 - -1, 30

rti-es(i) - zero
rpcts(i) - zero
rvals(i) - zero

8001 continue
c
c Solve LP-relaxation of (ILP)

call XTIMER(1,0,zero)
call LPSOLVE
call XTIMER(-1,0,RTIMES (-1))
if (xprint(8) .eq.0)

write(*,*) '***> LPSOLV:',RTIMES(-),' Z0-',Z0
c
c Check for all-integer LP solution

do 8004 j - 1, n
if (DABS(XO(j)-IRNDWN(XO(j))) .gt. tol) goto 8008

8004 continue
write(6,*)' --- > LP solution is all-integer (X*=X0)l

do 8006 j - 1, n
ixstar(j) = IRNDWN(XO(J))

8006 continue
goto 8090

c
c Initialize (ALL, X*, ZUP|
8008 call XTIMER(,0,zero)

ALL - one
c ALL - 1 -> only search for solns. strictly better than incumbent

ZUP - DBLE(IRNDWN(ZO))
do 8010 j - 1, n

IXSTAR(j) - -1
8010 continue
c

43

c Calculate global vars. ISIGNAC, ABAL, DIRS, CTXPT, BFCXO1
call SETUP
call XTIZ4ER(-1,0,rtimes(O))
if (xprint(O).eq.0) write(*,*) 3** SETUP: ',rtimes(0)

C

c Set default values for Z* in case HRUN fails or is bypassed
if (indobj .eq. 1) ZSTAR - zero
if (indobJ -eq. -1) ZSTAR - -2.*DABS(Z0)

C

C..

c Run Heuristic Ceiling Point Algorithm
call XTIMER(l,0,zero)

call HRUN

if (ixstar(l) .1t. 0)
w rite(*,*)'***> HRUN failed. Initial V~ -'..ZSTAR
call XTIMER(-l, 0, rtimes (1))

C

izz(l) - IRNDWN(ZSTAR)
if (xprint(8) .eq.O)
- write(*,*)'***> HRUN: ',rtimea(1),' Z*=',izz(1)

C

c Write out summary information for the Heuristic Algorithm
if (hprint(19) .eq. 1) then

rtimes(l) -rtimes(ll)+rtimes(12)+rtimes(13)-rtimes(0)
write(5,8015) infile,rtime3(-l),ZO,rtirnes(Il),rtimes(12),

- rvals(12),rtime3(13),rvals(13),rtimes(14),rpcts(l5)
8015 format(lX,All,F5.2,F7.l,F7.2, 6X,F8.2,F6.0,F7.2,F6.0,2F7.2)

write(5,8020) infile,rpcts(10),rpcts(ll),rpcts9(12),rpcts(13)
8020 format(lX,All,F5.2,6X,F8.2,6X,F8.2,5X,F8.2)

endif
C

if (DBLE(izz(l)) .ge. ZUP)
- write(6,*) '---> Heuristic alg. found optimal solution'

C

c ...
r c

8090 return
end

'44

C--------------- -------------------

C

subroutine LPSOLVE
C

c Called by SETUP to solve LP-relaxation of (ILP)
C..

C

c Read in data for this problem: A,B,C,INDCT,INDOBJ
call GETABC

c

c Find optimal solution, value:)MAR, XO, and ZO
call ZMPAS
return
end

C

C---

C

subroutine GETABC
c

c Reads in data describing (ILP) and, if desired, reorders vars.

C--

include '$DISK2: (SALTZ.ILPl]plist.for'
include '$DISK2: fSALTZ.ILPI]comio.for'
include '$DISK2: [SALTZ.ILPl]comprt.for'
include '$DISk2: (SALTZ.ILPl1coinlpl.for'
include '$DISk2: (SALTZ.ILPl]comrunl.forI
real*8 ctemp(nn) ,Atemp~mm,nn)
open(3,file-infile,status-'unknown')

c
c Read in problem data (unformatted)

read (3,*) in,n
do 2 i - 1, mn

read (3,*) (A(i,j),j-l,n),B(i),INDCT(i)
2 continue

read(3,*) (C(j),j1l,n),INDOBJ
c
c Initialize corder and varord

do 4 j - 1, n
corder(j) - j
varord(j) - j

4 continue
c
c Change all problems to maximization form

if (indobj .eq. -1) then

do 6 j = 1, n
COj) = -C(j)

6 continue
indobj - 1

endif
C

c Reorder vars. by (1) low c(j) to hi or (2) hi-lo
if (hprint(16) .gt. 0) then

if (hprint(16) .eq.1) call RSORTl(n,c,corder)

if (hprint(l6) .eq.2) call RSORT2(n,c,corder)
do 10 j - 1, n

ctemp(j) - c(corder(j))
do 8 1 - 1, mn

Atemp(i,j) - A(i,corder(j))

8 continue
10 continue 45

C

do 14 j - 1, n
c(j) - ctemp(j)
do 12 i - 1, mn

A(i,j) - Ateinp(i,j)
12 continue
14 continue

endif
C

C Data echo (after Possible reordering), if desired
if (hprint(l) .eq. 1) then

write(4,*) I ----- > I,infile
write(4,*) 'GETABC: m-',m,' n-',n
write(4,*) 'GETABC: corder-I,(corder(j),j-l,n)
do 16 i - 1, m

write(4,*) (A(i,j),j-l,n),B(i),INDCT(i)
16 continue

write(4,*) 'GETABC: C-', (C(J),J-l,n),INDOBJ
endif
return
end

C---

subroutine Z2PHAS

c Runs 2-phase simplex method on LP-relaxation of (ILP)
C ---

include 'SDISK2: [SALTZ.ILPl]plist.for'
include '$DISK2: fSALTZ.ILPljcomprt-for'
include '$DISK2: [SALTZ.ILPllcomlpl.for'
logical ARTR(im),ARTC(l+nn+2*m)

C

C initbv - columns initially in basis
c ibasis(J) - index of j-th basic variable
c indbas(j) - true -> X(j) is basic; false -> nonbasic
c izrow - objective function row's position in A matrix

izrow = m+I
c nge - number of >- constraints

nge -o0
c neq = number of - constraints

neq -o0
C

c Count number of >= and - constraints
do 20 i - 1, mn

if (indct(i) .eq. 0) neq - neq + 1
if (indct(i) .eq. -1) nge - nge + 1

20 continue
c
c irhs - right hand side column

irhs - n+nge+m+l
c ARTR = rows with an Artificial var; ARTC =columns w/ art.var.

do 21 j - 1, irhs
ARTC(j) - .false.

21 continue
c

do 22 i - 1, m
artr(i) - .false.
if (indct(i) .eq. 1) goto 22
ARTRMi - .true.
ARTC(N+nge+i) - .true.

22 continue
C

c (Re) initialize ABAR (for multirun case)
do 24 i - 1, izrow

do 23 j - 1, irha
ABARUi,J) - zero

23 continue
24 continue

do 25 j - 1, ni
ABAR(izrow,j) - -C(j)
XBAR(j) - zero

25 continue
do 26 j = 1, nn+2*zmm

indbas(j) - -false.
26 continue
c

ncolge - n
do 35 i - 1, m

do 30 j- 1, n
ABAR (i, J) - A (i, j)

30 continue
if (indct(i) .eq. -1) then

c Put in appropriate column from -Identity
ncolge - ncolge + 1
ABAR(i,ncolge) - -one

endif
c

c Append appropriate column of +Identity <->basis vars.
ABAR(i,n+nge+i) - one
INITBV(i) - n + nge + i
ibasis(i) - INITBV(j)
indbas(n+nge+i) = .true.
ABAR(i,irhs)= BMi
XBAR(n+i) = zero

35 continue
C

if ((neq + nge) .eq. 0) goto 45
do 40 j - 1, irhs

ABAR(izrow, j) - zero
if (ARTC(j)) goto 40
do 38 1 = 1, m

if (ARTR(i)) ABAR(izrow,j)=ABAR(izrow,j)-ABAR(i,j)
38 continue
40 continue
c
c ------ Run Phase I of the simplex method---

iphase -1
call ZSOLVE (izrow, iphase, irhs, nge)

c
if (hprint(2) .eq. 1) write(4,*) Iw '1,ABAR(izrow, irhs)
if (DABS(ABAR(izrow,irhs)) Ilt. tol) goto 45
if (hprint(2) .eq. 1) write(4,*) '*** Problem INFEASIBLE **

XO(1 - -one
goto 69

c
c ------Run Phase II of the simplex method---
45 iphase - 2

if ((nge + neq) .eq. 0) goto 58
c
c Calculate objective row froriginal problem

sum - zero
do 52 i - 1, m

if (ibasi3(i) .gt. n) goto 52
sum - sum + C(ibasis(i))*ABAR(i,irhs)

52 continue
ABAR(izrow,irhs) - sum

c

c Prevent artificial vars. from entering basis after Phase I
do 53 j - (n+nge+l),irhs-l

if (ARTC(j).and.(.not.indbas(j))) ABAR(izrow,j) -zero

53 continue
do 55 j - 1, n+nge

if (.not. indbas(j)) then
sum - zero
do 54 i - 1, m

if (ibasis(i) .gt. n) goto 54
sum - sum + C(ibasis(i))*ABAR(i,j)

54 continue
if (j .le. n) sum - sum - C(j)
ABAR(izrow,j) - sum

endif
55 continue
c
58 call ZSOLVE (izrow, iphase, irhs,nge)
C

c------- Save Optimal solution, obj. value, and prices
do 60 i - 1, m

XBAR(ibasis(i)) - ABAR(i,irhs)
PRICES(i) - ABAR(izrow,n+i)

60 continue
do 62 j =1, n

XO(j) =XBAR(j)

62 continue
ZO =ABAR(izrow,irhs)

c
ipos = 0
do 64 j = 1, (irhs-1)

if (.not. indbas(j)) then
ipos - ipos + 1
nonbas(ipos) - j

endif
64 continue
c

if (hprint(2) -eq. 1) then
write(4,*) ILP Opt. Soln. XO -',(XO(J),J-l,n)
write(4,) 'LP Opt. Value ZO -',ZO
write(4,*) 'LP Opt. Prices -',(PRICES(L),L-l,m)
write(4,) Iindbas ', (indba3(L),L-l,m)
write(4,) 'nonbas ',(nonbas(L),L-l,n+ngr)

endif
69 continue

return
end

C

'48

subroutine ZSOLVE (izrow, iphase, irhs,nge)
C

c Called by Z2PHAS to run simplex: method for a single phase.
C---

include '$DISK2: [SALTZ.ILPl]plist.for'
include '$DISK2: [SALTZ. ILPl]comprt .for'
include * $DISK2: [SALTZ ILPi] comipi for'
integer izrow, iphase, irhs, nge

C

npiv~l) - 0
npiv(2) - 0

C

c Pivot until optimality or maxit limit reached
do 70 k - 1, Inaxit

C

if (hprint(3) .eq. 1) write(4,*)
- ZSOLVE: Basis-', (ibasisMi,i-l,m)

C

c Find the pivot row (ir) and pivot column (is)
call ZSETRS (izrow, iphase, irha, nge)

c

c Exit if optimality reached
if (ir -eq. 0) goto 80

C

c otherwise, pivot on element (ir,is) of ABAR

call ZPIVOT(izrow,iphase,irhs,nge)
npiv(iphase) - npiv(iphase) + 1

c

70 continue
c
80 if (hprint(3) .eq.1) write(41*) 'No.Pivots=',npiv(iphase)

return
end

c
c---
c

subroutine ZSETRS (izrow,iphase,irhs,nge)
c
c Called by ZSOLVE to locate pivot row (LBV) and pivot column (EBV)
c Assumes problem has been converted to maximization form.
c---

include '$DISK2: [SALTZ.ILPl]plist.forl
include '$DISK2: [SALTZ.ILPl]comprt.for'
include 'SDISK2: (SALTZ.ILP1]comlpl.for'
integer izrow, iphase, irhs,nge

c
c ir - pivot row = argrnin (rhsMi/a(i,j))

ir - 0
c is - pivot column - arginnreduced costs in izrow)

is - 0
c
c Find EBV by examining reduced costs of all non-basic vars.

cmin - bigin
do 100 j - 1, (irhs-l)

if (indbas(j)) goto 100
if (ABAR(izrow,j) cje. cmin) goto 100
cmin - ABAR izrow, J)

49

is =
100 continue
c

c Optimality check: Is minimum reduced cost nonnegative?
if (ABAR(izrow,is) .gt. -tol) goto 120

c

c Find leaving basic variable (LBV) from min ratio test
rmin - biqm
do 110 i - 1, m

if (ABAR(i,is) .1t. tol) goto 110
ratio = ABAR(i,irhs)/ABAR(i,is)
if (ratio .1t. rmin) then

rmin - ratio
ir - i

endif
110 continue
c

if (hprint(4) .eq. 1) write(4,*) 'ZSETRS: (ir,is)=',ir,is
if (rmin .eq. bigm) then

write(4,*) LP is unbounded ~
write(*,*) '***LP is unbounded ***

STOP
endi f

120 continue
return
end

C

C--

C

subroutine ZPIVOT (izrow, iphase, irhs, nge)
c
c Called by ZSOLVE to pivot on ABAR(ir,is)
C---

include '$DISK2: [SALTZ.ILP1]plist.for'
include '$DISK2: [SALTZ.ILP1]comlpl.for'
integer izrow, iphase, irhs, nge
real*8 rcol(mm)

c
c Save column (unit vector) corresponding to LBV
c LBV/EBV ->leaving/entering basic variable

do 140 i =1, m+1
rcol(i) - ABAR(i,ibasis(ir))

140 continue
c
c Update basis: ibasis -indexes of basic vars
c indbas(J) - true -> X(j) in basis; false -> nonbasic

indbas(ibasis(ir)) = .false.
indbas(is) - .true.
ibasis(ir) - is

c
c Pivot in row of LBV and in NonBasic (NB) columns only

do 150 j - 1, irhs
if (indbas(j)) goto 150
ABAR(ir,j) - abar(ir,j)/abar(ir,is)

150 continue
c

.50

c Pivot in all rows except the one <->LBV (NB c olumns only)
do 170 i - 1, m~e-

if (i .eq. ir) goto 170
do 160 j - 1, irhs

if (.not. indbas(j))
- abar(i,j) - abar(i,j) - abar(i,ia)*abar(ir,j)

160 continue
170 continue
c
c rcol becomes new column corresponding to EBV

do 180 i - 1, m+l
abar(i,is) -rcol(i)

180 continue
return
end

51

C--------------- -------------------

C

subroutine SETUP
C

c Finds SIGNAC, DIRS (extreme directions of FR emanating from XO),
c CTXPT mapping, BFCXO, and converts all cts. to <- form.
c Assumes that LP-relaxation has been solved already by LPSOLVE.
C

C---

include '$DISK2: [SALTZ.ILPl1plist.for'
include S$DISK2: ESALTZ.ILPl1comprt.for'
include '$DISK2: ESALTZ.ILPl1comlpl.for'

c
c SIGNAC(i,j)= 1 -> A(i,j) and C(j) agree in sign

do 205 i =1, m
do 200 j= 1, n

signac(i,j) = .false.
if ((a(i,j) .gt. zero) .and. (c(j) .gt. zero))

- signac(i,j) = .true.
if ((a(i,j) .1t. zero) .and. (c(j) .1t. zero))

- signac(i,j) =.true.

200 continue
205 continue
C

c Create ABAL = B-inverse extended to n-dimensions
call BALAS

c

if (hprint(6) .eq. 1) then
do 206 k = 1, n

write (5,*) ' ABAL(k)=', (abal(j,k),j=l,n)
206 continue

endif
c
c Create DIRS = matrix of normalized extreme directions
207 do 220 k=1, n

d2norm = V2NORM(n,ABAL(l,k))
if (hprint(5) .eq. 1) write(5,*) ' d2norm 2- I,d2norm
do 215 j = 1, n

DIRS(j,k) = -ABAL(j,k)/d2norm
215 continue

if (hprint(5) .eq. 0) goto 220
write(5,*) ' Dirs(k)=',(DIRS(j,k),j-l,n)

220 continue
c
c Create CTXPT = mapping of ext. rays to constraints, i.e.,
c CTXPT(k,i) - true => Extreme ray k lies on constraint hp Mi

do 240 i = 1, m
aix - zero

do 235 k =1, n
aidk =zero

aix - aix + A (i, k) *XO (k)
do 230 j =1, n

aidk =aidk + A(i,J)*DIRS(j,k)
230 continue

CTXPT(k,i) = .false.
if (DABS(aidk) It. tol) CTXPT(k,i) - .true.

235 continue
if (hprint(5) .eq.1)write(5,*) ' CTXPT', (CTXPT(k,i),k1l,n)

C 52

c BFCXO(i) - .true. ->constraint Mi is binding at XO
BFCXO(i) - .false.
diff - BMi - aix
if (DABS(diff) Ilt. tol) BFCXO(i) - .true.

240 continue
if (hprint(5) .eq. 1) write(5,*) I BFCXO-',(BFCXO(i),j-1,m)

c Force all constraints to be in the form Ax <- b
do 250 i - 1, m

if (indct(i) .eq. 1.) goto 250
B(i) - -B(i)
indct(i) = 1.
do 245 j - 1, n

A(i,j) - -AUi,j)
245 continue
250 continue

if (indobj .eq. -1) ZO - -ZO
C

ret urn
end

C---

c subroutine BALAS

c Creates ABAL - final tableau in Balas' (dictionary) form
C See paper by Balas [Ba71].
C---

include '$DISK2: ISALTZ.ILPl1plist.for'
include 'SDISK2: [SALTZ.ILP1]comlpl.for'

C

c ibasis - indexes of basic variables
c nonbas -indexes of non-basic variables
c indbasj- true => Xj in basis, false -> nonbasic
c nx =no. of nonbasics (... will change when NGE > 0)

nx n
C

c Initialize ABAL matrix to all 0's
do 306 Jr - 1, n

do 305 jc - 1, n
ABAL(jr,jc) - zero

305 continue
306 continue
C

c Loop through each column, checking whether basic or not
do 330 j -1, n

if (.not. indbas(j)) goto 317
c
c X(j) is basic: find position of j in basis

do 310 k - 1, mn
if (ibasis(k) .eq. J) jpos - k

310 continue
c Move in column of B-inverse

do 315 icol - 1, nx
ABAL(J,icol) - ABAR(Jpos,nonbas(icol))

315 continue
goto 330

C

53

c X(j) is non-basic: find position of j in non-basis
317 do 320 k = 1, n

if (nonbas(k) .eq. J) jpos - k
320 continue
c Put appropriate n-dimensional unit vector in this columnT ABAL(J,jpos) - -one

C
330 continue

return
end

subroutine BOUNDS
c
c Finds Simple Upper Bounds SUB from <- cts. wI coefs. all >- 0
c Called by PRECUT. These are fairly weak bounds in general.
c---

include '$DISK2: [SALTZ.ILP1]plist.for'
include '$DISK2: ISALTZ.ILPl]comprt.for'
include '$DISK2: (SALTZ.ILPl]comlpl.forl
include '$DISK2: (SALTZ.ILPl1comxrun2.forI
logical okrow(mm)

c
c okrow(i) - .true. -> all A(i,J) >- 0 and (i) is <- ct.

do 410 i - 1, m
okrow(i) = .false.
if (B(i) .1e. zero) goto 410
do 405 j = 1, n

if (A(i,j) .1t. zero) goto 410
405 continue

okrow(i) - .true.
410 continue
c
c SUB(j) - minimum over all okrows of I B(i)/A(i,j)

do 440 j = 1, n
ubmin - l00.DO
do 430 i = 1, m

if (okrow(i)) th~n
if (A(i,j) .eq. zero) goto 430
ub = B(i)/A(i,j)
if (ub .1t. ubmin) ubmin - ub

endif
430 continue

SUB(J) - IRNDWN(ubmin)
440 continue

if (xprint(ll) .eq. 1) vrite(8,*) ' SUB-', (SUB(i),i-l,n)
return
end

54

C-------------------- ---------------

C

subroutine HRUN
C

c By Robert M4. Saltzman
c Called by RUN to run Heuristic Ceiling Point Algorithm
C--

include '$DISK2: [SALTZ.ILPl]Plist.for'
include '$DISK2: (SALTZ .ILP1]comprt .for'
include '$DISK2: (SALTZ.ILP1]comlpl.for'
include '$DISK2: (SALTZ.ILP1]comhrun.for'
include * $DISK2: [SALTZ.ILP1]comrunl .for'
integer ipordr(mm)
real*8 temp(re), tmax, valist(nn)

c
c....................................... Phase 1..............................
c

if (hprint(19) .eq. 1) call XTIMR(11,0,zero)
c
c ibest - index of best row -> feasible solution in FIS3 matrix

ibest - 1
c ffeas - indicates whether any feasible solution yet found

ffeas - .false.
c
c AIMINMi - smallest non-0 coef. in row i of A (See IFFEAS/ncp)

do 1102 i - 1, m
rmin - DABS (A (i, 1))
do 1101 j - 2, n

aa - DABS (A i, j))
if (aa -eq. zero) goto 1101
if (aa Ilt. rmin) rmin - aa

1101 continue
AIMINMi - rmin

1102 continue

if (hprint(7).eq.1) write(5,*) 'AIMIN-', (AIMINMi,i-1,n)
c
c PCTOI - percentage of coefs in (-1,0,1). Used in FEASCHK/ncp

PCT01 - zero
do 1110 i - 1, m

do 1105 j - 1, n
if (DABS(A(i,j)) Ilt. 2.) PCT01 - PCT01 + one

1105 continue
1110 continue

PCTO1 - PCTOI/(m*n)
if (hprint(7).eq.l) write(5,*) 'PCTO1-',PCTO1

c
c Initialize FIS3 - (FISi, FIS2, FIS3) with row i - (value, FIS)

do 1115 i - 1, m
FIS3(i,1) - -bigm
FIS3(i,2) - -one

1115 continue
c
c HROUNDNRT returns result in the first row of FIS3

call HROUND
if (hprint(7) .eq.1) write(5,*)'F1S3',(fis3(l,iq),iq=1t,n+1)
if (NCP) goto 1190

c
55

c RATESMk - rate of obj. change of k-th extreme direction
C (See Section 4.3.1: "rho~k)")

do 1124 k - 1, n
RATES(k) - VDOT(n,c,dirs(1,k))

1124 continue
if (hprint(7) .eq.1) write(5,*) 'RATES-', (RATES(ik),ik-1,n)

c
c CTVAL(i) - Sum of rates(k) for all ext. dirs. lying on (i)

do 1128 i = 1, mn
c for those cts. not binding at XO, set CTVAL to -inf.

CTVAL(i) - -bigm
if (.not. BFCXO(i)) goto 1128
CTVALMi - zero
do 1126 k = 1, n

if (CTXPT(k,i)) CTVAL(i) - CTVAL(i) + RATES (k)
1126 continue
1128 continue

if (hprint(7).eq.1) write(5,*) 'CTVAL-', (CTVAL(i),i=1,m)
C

c.............................. Phase 2................................
c

if (hprint(19) .eq. 1) then
call XTIMER(-11,O,rtines(11))
call XTIMER(12,0,zero)

endif
c
c nhps - number of constraint hyperplanes to search
c (See "K4" in Section 4.5)

if (hprint (20) .eq. 0) then
nhps - AINT(SQRT(REAL(N)))

else
c Set nhps = number of constraints binding at XO

nhps - 0
do 1130 i = 1, m

if (BFCXO(i)) nhps = nhps + 1
1130 continue

endif
c nis2 - max. number of integer solutions to seek in Phase 2

nis2 - MINO(m,nhps)
c nis3 = max. number of integer solutions used to launch Phase 3
c (See "K1" in Section 4.5)

nis3 - nis2 + 1

c Loop through constraints, searching for 1-ceiling points

do 1140 ip - 2, nis3
c
c Pick a search constraint (ihp)

ihp - IHPICK(m)
if (hprint(7).eq.1) write(5,*) 'hp - ',ihp,' nis3 - ,nis3

c
c Calculate a search direction along this search ct.

call HSDIR(ihp)
if (hprint(7).eq-l) write(5,*) 'Sdir ',(sdir(j),j-l,n)

56

c Use Phase 2 method to locate feasible integer solution(s)
call FINDFS (ip, ihp)

if (.not. FFEAS) goto 1140
if (FIS3(ip,l) .GT. FIS3(ibest,l)) ibest - ip
if (hprint(7).eq.1) then

write(5,*) 'FFEAS-',FFEAS
write(5,*) 'FIS3', (fis3(ip,iq),iq-l,n+l)
write(5,*) 'Index of best pt. - 1,ibest

endif
C

c Exit if found high-valued ceiling point, i.e.,
if (ncp .and. (FIS3(ip,1).ge.FIS3(ibest,l))) then

c Save information prior to exiting
if (hprint(19) -eq. 1) then

call XTIMER(-12,0,rtimes(l2))
rvals(12) - FIS3(ibest,l)
call XTINER(13,0,zero)

endif
goto 1190

endif

1140 continue
C

if (FIS3(ibest,l) .gt. -bigm) goto 1150
if (hprint(7).eq.1) write(5,*) 'FINDFS failed to find FIS'

C

c Phase 3.............................
c

c (See Section 4.4)
c Pursue in Phase3 only the WKEEP best FIS's found in Phase2
c First column of FIS3 is objective function value of point
C

1150 if (hprint(19) .eq. 1) then
call XTIMER(-12,0,rtimes(12))
rvals(12) - FIS3(ibest,l)
call XTIMER(13,0,zero)

endif
c

NKEEP = 2
c (See "K5" in Section 4.5)

do 1152 jj - 1, nis3*
temp(jj) - FIS3(jj,l)

1152 continue
do 1156 ii - 1, WKEEP

tmax - -bigm
C Find the point with the iith largest objective value

do 1154 jj - 1, nis3
if (temp(jj) .gt. tmax) then

tmax - temp(jj)
ipordr(ii) - jj

endif
1154 continue

texnp(ipordr(ii)) - -bigm
1156 continue

if (hprint(7) .eq.1) write(5,*) 1ipordr:', (ipordr(j),J=1,NKEEP)
C

.57

c Phase 3: try to improve upon a feasible integer solution
do 1170 iip - 1, NKEEP

ip - ipordr(iip)
c Skip point if it is infeasible

if (FIS3(ip,2) .1t. zero) goto 1170
C

c 01W, add to list of obj. values (PRIOR to Phase 3)
valist(iip) - FIS3(ip,l)
if Up .eq. 1) go to 1165

C

c Skip point if it has same obj.value as previous point
if (FIS3(ip,l) .eq. valist(iip-1)) goto 1170

C

c Repeatedly call Phase3 with FIS(ip,) until no improvement
1165 valold - FIS3(ip,1)

call PHASE3(ip)
c Phase3 result overwrites previous FIS3(ip,)

valnew - FIS3(ip,1)
if (valnew .gt. valold) goto 1165

c

if (F153(ip,1) .gt. FIS3(ibest,1)) ibest -ip

1170 continue
if (hprint(7).eq.1) write(5,*)'Post3 best:',FIS3(ibest,l)

C

c Return the best solution as (Z*,X*)
1190 ZSTAR -FIS3(ibest,l)

do 1195 j = 1, n
IXSTAR(j) = IRNDIIN(FIS3(ibest,l+j))

1195 continue
C

if (hprint(19) .eq. 1) then
call XTIMER(-13,0,rtimes (13))
rvals(13) = ZSTAR

c
c Combine times of SETUP (rtimes(0)) and Phase 1

rtimes(ll) - rtimes(0) + rtimes(l1)
c Save LP time

rtimes(10) - rtimes(-l)

c Get each phase's percentage of total
rtimes(14) = rtimes(10)+rtimes(1l)+rtimes(12)+rtiues(13)
do 1196 ii = 10, 13

rpcts(ii) = 100.DO*rtimes(ii)/rtimes(l4)
1196 continue
c Get total/LP ratio

rpcts(15) - rtimes(14)/rtimes(10)
c Printing of this information done in RUN

endif

if (hprint(7).eq.1) then
write (5, *1'Heuristic best value Z*1,ZSTAR
write(5,*) 'Heuristic best solution X*', (IXSTAR(j),J1l,n)

endif
return
end 58

C-----------------------------------

C

Integer*2 function IHPICK(ncts)
C

c Called by HRUN to pick (remaining) HP w/ best CTVAL.
c Result: IHPICK - index of search HP (- "h" in Section 4.3.1).
C--

include '$DISK2: (SALTZ .ILP1]plist .forl

include '$DISK2: (SALTZ.ILPl]comhrun.forI
C

c Select the remaining constraint with the smallest CTVAL(i)
valmax - -bigm
do 1210 i - 1, ncts

if (CTVAL(±) .gt. valmax) then
valmax - ctval(i)
imax - i

endif
1210 continue
c

c Prevent this constraint from being selected in the future
CTVAL(imax) - -bigm
IMICK - imax
return
end

C--- ------------

C

subroutine HSDIR (ihp)
C

c Called by HRUN to calculate search direction SDIR.
c Result: SDIR (- "d" in Section 4.3.2).
C---

include '$DISK2: (SALTZ.ILPl]plist.for'
include 'SDISK2: ESALTZ.ILP1]comprt.for'
include '$DISK2: fSALTZ.ILP1]comlpl.for'
include '$DISK2: ESALTZ.ILPl1comhrun.for'
INTEGER ihp

C

c Add extreme directions lying on constraint hyperplane (ihp)

do 1220 j =1, n
sdir(J) =zero

do 1215 k =1, n
if (ctxpt(k,ihp)) sdir(j) - sdir(j) + dirs(j,k)

1215 continue
1220 continue
c

c Normalize the search direction
d2norm - V2NORM(n,sdir)
if (hprint(8).eq.1) vrite(S,*) 'Sdirnorm: 1,d2norm
do 1224 j -1, n

sdir(j) sdir(j)/d2norm
1224 continue

return
end

59

C--------------- --------------------

C

subroutine FINDFS (ip, ihp)
C

c Called by HRUN to find a Feasible Integer Solution
c Result: stored in global variable FIS3(ip,)
C---

include 'SDISK2: (SALTZ.ILP1]plist.for'
include '$DISK2: (SALTZ.ILP1]comprt.forl
include '$DISK2: (SALTZ.ILP1]comlpl.for'
include '$DISK2: [SALTZ.ILPI~cornhrun.forI
integer ip,ihp
real*8 ahp(nn) ,siprev,sicurr,gap(mm),r(nn) ,rprev(nn),

- rbest(nn),fs(nn), dx(nn)

if (hprint(9) .eq.1) write(5,*) 'FINDFS: hp,ip=',ihp,ip
c

c ffeas = indicates whether or not an FIS has been found
ffeas = .false.

c nchk - max. number of consecutive infeasibility increases
c (= "K2" in Section 4.5)

nchk = 1+aint(sqrt(real(n)))
c ncisi = counter for number of consecutive infeas. increases

ncisi - 0
c sicurr= SINF of current solution

sicurr= zero
c siprev= SINF of previous solution

siprev= sicurr
c SINF = Abbreviation for Sum of Infeasibilities
c

v - -bigm
vbest = -bigm
do 1240 j = 1, n

ahp(j)= A(ihp,j)
r(j) - -one

fs(j) = XO(j)
FIS3(ip,j+l) = -one

1240 continue
c

do 1250 i - 1, m
gap(i) - B(i)
do 1245 j - 1, n

gap (i) -gap (i) - A (i,J)*r (J)
1245 continue
1250 continue
c
c....................................... (Section 4.3.3)

do 1380 k - 1, maxit
c (maxit ="K3" in Section 4.5)

do 1258 j - 1, n
rprev(j) - r(j)

1258 continue
vprev = V

c

60

cCcCCcCCCCccCCCCcCCCccCCCCCCCCCCCCCCCCCCCCCccceCCCcccCCCCCc

c count the number of repetitions of same solution
nreps = 0

1259 call FIS2HP(n,r,ahp,sdir,fs)
C

c Check whether this iteration differs from previous one
do 1260 j - 1, n

if (r(j) .ne. rprev(j)) goto 1261
1250 continue

nreps - nreps + 1
if Cnreps .lt. nchk) goto 1259
if (hprint(9).eq.l)write (5,*) 'EXIT:',nchk,' same its'
goto 1390

ccccccccccccceccc
c
c Find DX - change in R from previous iteration RPREV
1261 do 1262 j - 1, n

r(j) - DMAX1(zero, r(j))
dx(j)= r(j) - rprev(j)

1262 continue
c
c Update gaps

do 1266 i - 1, m
do 1264 j - 1, n

gap(i) - gap(i) - A(i,j)*dx(j)
1264 continue
1266 continue
c
c Determine if the solution is feasible

ifeas -IFFEAS(m,n~gap)
if (ifeas .ne. 1) goto 1300

c
c Feasible solution: calc. obj. value, check vs. vbest

ncisi -0
siprev- zero
v - VDOT(n,c,r)
if (v .le. vbest) goto 1270
if (hprint(9).eq.l) then

write(5,*) 'New incumbent value',v
write(5,*) 'New incumbent so1n. ',(r(j),j=l,n)

endif
vbest - v
do 1268 j - 1, n

rbest(j) = r(j)
1268 continue

if (ncp) goto 1390
1270 if (v .ge. vprev) goto 1380

if (hprint(9).eq.1) write(5,*) 'EXIT: V declining'
goto 1390

c
c Solution infeasible: sum the linfeasibilitiesi
1300 sicurr = zero

do 1310 i = 1, m
if (gap(i) Ilt. zero) sicurr - sicurr - gap(i)

1310 continue
c

61

c Check for nchk consecutive increases in SINF
if (sicurr .gt. siprev) then

ncisi - ncisi + 1
siprev= sicurr
if (ncisi .ge. nchk) goto 1390

else
ncisi - 0
siprev- zero

endif
c

1380 continue
if (hprint(9).eq.1) write(5,*) 'FINDFS: max. iter. limit'

c ..
c
1390 if (vbest .eq. -bigm) goto 1399

FIS3(ip,1) =vbest

L do 1395 j =l,n

FIS3(ip,1+j) - rbest(j)
1395 continue
c
1399 continue

if (hprint(9).eq.1) write(5,*) IFINDFS: final vbest=',vbest
return
end

c --
a

subroutine FIS2HP (ndim, res,ai,dir, ifs)
C
" Called by FINDFS to find a Feasible Integer Solution wrt HP
c (See Section 4.3.3) (ndim-N, res-r, ai-ahp, dir=SDIR, xfs-f a)
c --

include '$DISK2: [SALTZ.1LPl]plist.for'
include 'SDISK2: [SALTZ.ILP1]comprt.for'

c
integer ndim
real*8 res(nn),ai(nn),dir(nn).,xfs(nn),xfrac(nn),alpha(nn)
if (hprint(10).eq.1) write(5,*) TFIS2HP:...........

c
c Find first component to reach next integer value
a (xfrac ="f(j)" in Section 4.3.3)

alpmin =bigmi

do 1410 j - 1, ndim.
res(j) - zero
if (dir(j)) 1402,1410,1404

c dir(j) < 0: if rac - distance to next lover integer
1402 xfrac(j) - xfs(j) - DINT(Xf3(j))

if (xfrac(j) -eq. zero) xfrac(j) - one
goto 1408

c dirci) > 0: if rac = distance to next higher integer
1404 xfrac(j) -(one + DINT(xfs(j))) -xfs(j)

1408 alpha(j) -xfrac(j)/DABS(dir(j))

if (alpha(j) .1t. alpwnin) alpmin -alpha(j)

1410 continue
c

62

c Move to non-i. feas. solution w/ >- 1 integer comp.
c (update xfs) and round to integer solution based on A(ir)

do 1420 j - 1, ndim
xfs(j) - xfs(j) + alpmin*dir(j)
if (ai(j)) 1412,1414,1416

1412 resfj) -one + DINT(xfs(j))
if (xfs(j) .eq. DINT(xfs(j))) res(j) -xfs(j)

goto 1420
1414 res(j) - DNINT(xfs(j))

goto 1420
1416 res(j) -DINT(xfs(j))
1420 continue

if (hprint(10).eq.1) then
write(5,*) 'fsnew', (xfs(j),j1,ndim)
write(5,*) 'res ', (res(j),j=1,ndim)

endif
return
end

C---

integer function IFEFEAS (im, in,gaps)

c Called by FINDFS to chech the feasibility of a solution
c Result: 1 => gaps all non-neg. (feasible)
c---

include '$DISK2: [SALTZ.ILPl1plist.for'
include '$DISK2: [SALTZ.ILP1]comprt.for'
include '$DlSK2: (SALTZ. ILP11comrunl .forI
include '$DISK2: [SALTZ.ILP1]comhrun.forI
integer im, in

real*8 gaps(im)
c

IFFEAS =0

ffeas = false.
ncp =.false.

do 1430 i = 1, irn
if (gaps(i) .lt. zero) goto 1440

1430 continue
c
c Feasible point has been found since all gaps are nonnegative

ffeas = .true.
IFFEAS 1
if (in .gt. 8) goto 1435
if (PCTO1 .gt. 0.75) goto 1435

C

c Check for n-ceiling point: use suffici.ant conditon for CP(FR)
if (hprint(21) .eq. 0) then

do 1432 i - 1, un
if (gaps(i) Ilt. airnin(i)) then

ncp = .true.
goto 1435

endif
1432 continue

ce n d i f

6

1435 if (hprint(ll).eq.1)write(5,*) '++Feasible: ncp -,ncp

goto 1450
c

c Infeasible point has been found since a gap is negative

1440 continue
if (hprint(ll) .eq.l)write(5,*) ,--Infeas:gaps(i)-',gapS(i)

c

1450 continue
return
end

L6

subroutine PHASE3 (ip)
C

c Called by HRUN to improve upon FIS3(ip,). (See Section 4.4)

C..

include 'SDISK2: [SALTZ.ILPl]plist.forl
include '$DISK2: [SALTZ.ILP1]comprt.for'
include '$DISK2: [SALTZ.ILPl]coznlpl.for'
include '$DISK2: [SALTZ.ILPl]comhrun.forI
integer ip
real*8 gaps (mm) ,IS1 (nn) , 12 (nn) ,dk
if (hprint(12).eq.l) write(5,*) 'PHASE3: ip = ',ip

if (hprint(12) .eq.l) write(5,*) UFIS3 =',(FIS3(ip,L),L-l,n+l)

C

c Each row of FIS3 contains (value, solution)

do 3000 j = 1, n
I1(j) = FIS3 (ip, J+l)
IS2(j) = IS1(j)

3000 continue
Vl = FIS3(ip,l)
V2 = Vl

c
c Find the slack (gaps(i)) of solution wrt each constraint

do 3008 i = 1, m

gaps(i) - BUi)
do 3004 j =1, n

gaps (i) gaps(i) - A(i,j)*ISI(j)

3004 continue
3008 continue

j = 0
k =0
dk =zero

c
c Try changing 1 component of 151 to improve upon it

call STAYFS(ISl,gaps, j,k,dk)
c

if (hprint(12).eq.l) write(5,*) 'STAYFS-> k,dk =',k,dk

if (k -eq. 0) goto 3010
IS1(k) = 151(k) + dk

c
c Vl objective function value of result on STAYFS

Vi Vl + (dk*C(k))
c
3010 continue
c
c Try changing 2 components of 152 to improve upon it

call TWOVAR(152,gaps)
C

c V2 =objective function value of result of TWOVAR
V2 = VDOT(n,C,1S2)

c

c Replace FIS3(ip,) with the better of 151 and 152
if (Vi .gt. V2) then

FIS3(ip,l) - VI

do 3015 j = 1, n
FIS3(ip,j+1) = IS1(j)

3015 continue
if (hprint(12) .eq.i)write(5,*) 'Ph3:l-var best, V=',V1

65

else
c TWOVAR was better than STAYPS
3020 FIS3(ip,1) -V2

do 3025 j =1, n
FIS3(ip,j+1) -1S2(j)

3025 continue
if (hprint(12).eq.1)write(5,*) 'Ph3:2-var best, V-',V2

endif

c
return
end

C--

C

subroutine STAYFS (ISOL,gap, ij,ik,deltak)

" Called by PIIASE3 to improve upon ISOL by modifying 1 component.
c (See Section 4.4.1)
c---

include '$DISK2: fSALTZ.ILPl]plist.for'
include '$DISK2: (SALTZ.ILPllcomprt.for'
include '$DISK2: (SALTZ.ILP1]comlpl.forl
include 'SDISK2: (SALTZ.ILPljcomhrun.forI
include '$DISK2: [SALTZ.ILPl1comrunl.forI

C

integer ij, ik
real*8 ISOL(nn) ,gap(mm) ,deltak,d(nn)
if (hprint(13) .eq. 1) then

write(5,*) 'STAYFS: gap= ', (gap(ii-1,m)
endif

c
vbest = -bigm
ivbest= 1

c
c Consider changing every component (iv)

do 3170 iv = 1, n
d(iv) = zero
if (iv .eq. ij) goto 3170

c Xv is no help if gap small and must decrease to help obj

do 3105 i -1, m
if ((gap(i) .lt.AIMIN(i)) .and.SIGNAC(i,iv))goto 3170

3105 continue
if (C(iv)) 3110, 3170, 3140

c Civ < 0: delv is largest nonpos. change
a
3110 d(iv) - -bigni
c (delv ="delta(i,j)" in Section 4.4.1)

do 3120 i -1, m
if (A(i,iv) .eq. zero) goto 3120
delv = gap M)/A (i, iv)
if (delv .gt. zero) goto 3120

delv = -DMIN1G(SOL(iv) ,dabs (delv))
if (delv .gt. d(iv)) d(iv) - delv

3120 continue
d(iv) - DBLE(IRNDUP(d(iv))
goto 3170

66

C

c Civ > 0: delv is smallest nonneg. change
3140 d(iv) -bigm

do 3150 i = 1, m
if (A(i,iv) .eq. zero) goto 3150
delv = gap(i)/A(i,iv)
if (delv .1t. zero) goto 3150
if (delv .It. d(iv)) d(iv) - delv

3150 continue
d(iv) - DBLE(IRNDWN(d(iv))

C
3170 continue
c Prepare to exit: ik - index of best component to change

if (hprint(13) .eq.1)write(5,*)'STAYFS:deltast 1 (d(j),j=1,n)
ik -0

deltak - zero
vbest = zero
do 3180 j - 1, n

val = C(j)*d(j)
if (val .gt. vbest) then

c Update the incumbent

vbest =val

ik = j
deltak =d(j)

endif
3180 continue

if (hprint(13) .eq.1)write(5,*) 'STAYFS:k-',ik,' dk=',deltak
return
end

C---
c

subroutine TWOVAR (ISOL, ogap)
c
c Called by PHASE3 to improve upon ISOL by modifying 2 variables.
o (See Section 4.4.2)
c---

include '$DISK2: [SALTZ.ILP1Jp~ist.for'
include '$DISK2: LSALTZ.ILPljcomprt.for,
include '$DISK2: [SALTZ. ILPilcomipi .for'

real*8 ISOL(nn),ogap(mm),tis(nn),IRES(nn),tgap(mnm),ud(nn)
if (hprint(14) .eq.1) write(5,*) '2VAR:ISOL', (isol(L),L~1,n)

C
vbest - zero

c
c Change each first component of ISOL by +1 or -1

do 3270 j =1, n
c ud(j) -direction {up(l)/down(-1)? which Xj will go

ud(J) -one

if (ISOL(j) .eq. zero) goto 3210

sum = zero
do 3205 i - 1, m

sum = sum + A(i,j)
3205 continue

if (sum .gt. zero) ud(j) - -one

67

3210 do 3220 L = 1, n
tis(L) - ISOL(L)

3220 continue
tis(j) - tis(j) + ud(j)
do 3230 i = 1, m

tgap(i) = ogap(i) - A(i,j)*ud(j)
3230 continue
c

k = 0
dk = zero
if (IFFEAS(m,n,tgap) .eq. 0) goto 3240

c
c Changing first component led to feasible solution

call STAYFS(tis,tgap, j,k,dk)

goto 3250
c
c Changing first component led to infeasible solution
3240 continue

call GETFES(tis,tgap, j,k,dk)
C
3250 if (k .eq. 0) goto 3270
c Save result of the changes if improvement

vres = (c(j)*ud(j)) + (c(k)*dk)
if (vres .gt. vbest) then

vbest = vres

do 3265 L = 1, n
ires(L) = ISOL(L)

3265 continue
ires(j) = ISOL(j) + ud(j)
ires(k) = ISOL(k) + dk

endif
c
3270 continue
c
c Return result in ISOL if it is an improvement

if (vbest .gt. zero) then
do 3280 L = 1, n

ISOL(L) ires(L)
3280 continue

endif
c
3290 if (hprint(14).eq.l)write(5,*)'TWOVAR:vbest=',vbest

return
end

c ---
c

subroutine GETFES(ISOL,gap, ij,ik,deltak
c (tis,tgap, J, k, dk)
c Called by TWOVAR to find FIS by 1-var. change from ISOL(infeas)
c (Referred to as "GAINFEAS" in Section 4.4.2)
c--

include '$DISK2:[SALTZ.ILP1]plist.for'
include '$DISK2:[SALTZ.ILPl]comprt.for'
include '$DISK2:[SALTZ.ILP1comlpl.for'
integer ij, ik
real*8 ISOL(nn),gap(mm),deltak

68

if (hprint(14) .eq. 1) then
write(5,*) 'GETFES: ij-',ij, ' ik-',ik
write(5,*) 'GETFES: isol-', (isol(L),L1I,n)
write(5,*)'GETFES: gap-*, (gap(L),L-l,m)

endif
c

ik - 0
deltak - zero
vbest -- bigm

0 Allow for C(j)*Del(j) to outweigh C(v)*Delv
C

c Check whether or not each component can lead to feas. soin.
do 3370 iv - 1, n

if (iv -eq. ij) goto 3370
do 3310 i - 1, ms

if ((gap(i).lt.zero).and.(A(i,iv).eq.zero)) goto 3370
3310 continue
C

iright -IRNDWN(bigm)
ileft -- iright

C

do 3350 i =1, m
C

if (A(i, iv)) 3320, 3350, 3330
c A(i,iv) < 0:
3320 idiv - IRNDUP(gap(i)/A(i,iv))

if (idiv .gt. ileft) ileft = idiv
goto 3350

c A(i,iv) > 0:
3330 idiv - IRNDWN(gap(i)/A(i,iv))

if (idiv .1t. iright) iright =idiv

c
3350 continue
c

c Limit decrease (ileft) to avoid ISv + Dv < 0
ileft = MAXO(ileft, -IRNDWN(ISOL(iv)))
if (hprint(14) .eq. 1)

- write(5,*)'GETFES: iv=',iv,' (L,R)=',ileft,iright
if (ileft .gt. iright) goto 3370

d = DBLE(iright)
if (c(iv) .1t. zero) d = DBLE(ileft)
val = c(iv)*d
if (val .gt. vbest) then

vbest = val
ik - iv
deltak -d

endi f
c
3370 continue

if (hprint(14) .eq. 1) then
write(5,*) 'GETFES: ik-',ik,' deltak=',deltak
write(5,*) 'GETFES:vbest- ',vbest

endif
return
end

69

C--------------- --------------------

C

subroutine HROUND
C

c Called by HRUN to round XO wrt binding cts. Store best in FIS3(1,)
C---

include '$DISK2: ESALTZ.ILPl~plist.for'
include '$DISK2: [SALTZ.ILPl~comprt.for'
include '$DISK2: (SALTZ.ILP1]comlpl.for'
include '$DISK2: (SALTZ.ILPl1comhrun.forI
integer ISOL(nn)

real*8 gap (mm)
c

c Loop through all problem constraints
do 3470 i = 1, m

if (.not. BFCXO(i)) goto 3470
C

c Round XO wrt this binding constraint: ISOL is result.
call HRNDPT (X0,i, ISOL)
if (hprint(15) .eq.l)write(5,*) 'HRNDPT->', (ISOL(L),L=l,n)

c
c Compute the gap or slack of ISOL wrt each constraint

do 3420 irow = 1, m
gap(irow) = B(irow)
do 3410 j = 1, n

gap(irow) = gap(irow) - A(irow,j)*DBLE(ISOL(j))
3410 continue
3420 continue
c
c Determine the feasibility of ISOL using gap vector

ifeas = IFFEAS(m,n,gap)
if (hprint(15) .eq. 1) then

write(5,*)'HRNDPT: ifeas ',ifeas
write(5,*) 'HRNDPT: gap ', (gap(L),L=1,m)

endif
if (ifeas .eq. 0) goto 3470

c
c ISOL is feasible: Compute its objective function value

val = zero

do 3430 j = 1, n
val = val + C(j)*DBLE(ISOL(j))

3430 continue
c

it (val .gt. FIS3(l,l)) then
C New best feasible solution

FIS3(l,l) - val
do 3450 J - 1, n

FIS3(l,j+l) - DBLE(ISOL(j))
3450 continue

endif
c
3470 continue

if (hprint(15) .eq. 1)
- rite(5,*)IHROUND: FIS3(1,)-',(FIS3(1,L),L-l,n+l)
return
end

70

C . .

subroutine HRNDPT (X, ihp, IRES)
c
c Called by HROUND to round X to the feasible side of constraint ihp.
c Returns rounded integer solution in IRES. (See Section 4.3.3)

C ---

include '$DISK2: [SALTZ.ILP1]plist.for'
include '$DISK2: [SALTZ.ILP1lcomlpl.for'
integer IRES (nn),ihp
real*8 X(nn)

C
C Direction to round X(j) depends on sign of A(ihp,j)

Do 3540 j = 1, n
if (A(ihp,j)) 3510, 3520, 3530

3510 IRES(j) - IRNDUP(X(j))
goto 3540

3520 IRES(j) - IDNINT(X(j))
goto 3540

3530 IRES(j) - IRNDWN(X(j))
3540 continue

return
end

71

REAL*8 FUNCTION V2NOP.M(N,X),

C

c Returns the L2-Norm of an n-vector X.
C--

INTEGER N
REAL*8 X(N),sum

C

sum - VDOT(N, X, X)
V2NORM - DSQRT(surn)
return
end

C---

C

REAL*8 FUNCTION V1NORM(N,X)
C

c Returns the Li-Norm of an n-vector X.
C---

integer N, j
REAL*8 X(N),sum

C

sum =O.DO

do 9002 j = 1, N
sum - sum + DABS(X(j))

9002 continue

VINORM =sum
return
end

c---

c
REAL*8 FUNCTION VDOT(N,X,Y)

c
c Returns the dot product of 2 n-vectors, X & Y.
c---

INTEGER N,j
REAL*8 X(N),Y(N), sum

c
sum = O.DO
do 9010 j = 1, n

sum = sum +- x(j)*y(j)
9010 continue

VDOT = sum
return
end

72

C------------- -----------------

C

Integer function IRNDUP(x)
C

c Rounds a real number x up to smallest integer >- x
C--

include '$DISK2: [SALTZ.ILPl]plist.for'
real*8 x

C

if (x .1t. 0) go to 9015
c For x>- 0

IRNDUP - 1 + IDINTWx
if ((x-tol) .le. IDINT(x)) IRNDUP -IDINT(x)
goto 9020

c For x< 0:
9015 IRNDUP = IDINT(x)

if ((x-tol) .1e. (IDINT(x) - 1)) IRNDUP - IDINTWx
9020 continue

return
end

C--

c
Integer function IRNDWN(x)

C

c Rounds a real number x down to largest integer <- x
c---

include t$DISK2: ESALTZ.ILPl]plist.for'
real*8 x

c
if (x .1t. 0) go to 9025

c For x>= 0
IRNDWN = IDINTWx
if ((x+tol) .9e. (1+IDINT(x))) IRNDWN -1+IDINT(x)
goto 9030

c For x <0:
9025 IRNDWN = IDINTWx - 1

if ((x+tol) .ge. IDINT(x)) IRNDWN -IDINT(x)
9030 continue

return
end

73

subroutine RSORT1 (in, vec, indexa)

c Crude sort of Real vector from low to high. result: indexs
C---

include 'SDISK2: [SALTZ.ILPl]plist.for'
integer in, indexs (nn)
real*8 vec (nn) ,temp(nn)

C

do 9040 j - 1, in
temp (J) - vec (j)

9040 continue
do 9050 i -I, in

tmin = bigm
do 9045 j - 1, in

if (temp(j) .1t. tmin) then
tmin = temp(j)
indexs(i) j

endif
9045 continue

temp(indexs(i)) - bigm
9050 continue

return
end

c --

subroutine RSORT2 (in, vec, indexs)
c
c Crude sort of Real vector from high to low, result: indexs
C---

include '$DISK2: (SALTZ.ILPl]plist.for'
integer in, indexs (nn)
real*8 vec (nn) ,temtp (nn)

c
do 9060 j - 1, in

temp(j) = vec(j)
9060 continue

do 9070 i - 1, in
tmax = -bign
do 9065 j = 1, in

if (temp(j) .gt. tmax) then
tmax -temp(j)
indexs(i) =j

endif
9065 continue

temp(indexs(i)) =-bigm

9070 continue
return

end

74

SUBROUTINE XTIMER(CLOCK,PRTOPT, SECONS)

IMPLICIT REAL*8 (A-H,O-Z)

PARAMETER (NUMTIM = 30)

INTEGER CLOCK, PRTOPT

C

C This routine turns on or off a selected clock and optionally prints

C statistics regarding all clocks or just the clock chosen.

C
C The procedure for adding a new timer is as follows:
C 1) Change PARAMETER statement at beginning of this subroutine
C 2) Change computed GOTO in TIMOUT subroutine
C 3) Add WRITE statement in TIMOUT subroutine and GOTO 500 statement
C 4) Add FORMAT statement in TIMOUT subroutine
C
C Value of ABS(CLOCK) is which clock to use. If CLOCK is > 0, then the
C clock is reset to start timing at the current time (determined by
C calling the machine dependent subroutine NOWCPU. If CLOCK is < O,then
C the clock is turned off & the statistic is recorded for the amount of
C time since the clock was turned on.
C CLOCK = 0 resets all clocks and statistics if PRTOPT = 0
C PRTOPT = 0 indicates print nothing
C = 1 indicates print last statistic for this clock,
C only if CLOCK < 0
C = 2 indicates print all statistics for all clocks
C SECONS = CPU Time in seconds for clock number ICLOCK
C
C Currently, the only statistic kept is the mean
C
C The information is placed in COMMON so it stays around each time the
C subroutine is called. Note that the size of the common is determined
C by the parameter at the beginning of the routine.
C

COMMON /MITIME/ LASTIM(NUMTIM),ISUMTI(NUMTIM),NUMSTA(NUMTIM)
C

INTEGER ICLOCK, ITIME, ISTAT, ILO, IHI
CHARACTER*4 LMEAN, LAST
DATA LMEAN/'MEAN'/, LAST/'LAST'/

C
ICLOCK = IABS(CLOCK)
IF (ICLOCK .GT. 0) THEN

ITIME = NOWCPU(0)

IF (CLOCK .GT. 0) THEN

LASTIM(ICLOCK) = ITIME
ELSE

ISTAT - ITIME - LASTIM(ICLOCK)
SECONS = ISTAT/100.DO
ISUMTI(ICLOCK) - ISUMTI(ICLOCK) + ISTAT
NUMSTA(ICLOCK) - NUMSTA(ICLOCK) + 1

END IF

ELSE IF (PRTOPT .EQ. 0) THEN

ITIME = NOWCPU(1)
ITIME = NOWCPU(0)
DO 100 I=I,NUMTIM

LASTIM(I) = ITIME

ISUMTI(I) = 0

NUMSTA(I) = 0

100 CONTINUE
END IF

75

C
C Now deal with print options
C

GO TO (200, 300, 400) PRTOPT+l
C Print option 0 and default is do nothing
200 GO TO 500
C Print option 1 is to print statistic for last clock if just turned off
300 IF (CLOCK .LT. 0) THEN

CALL TIMOUT(LAST, ISTAT, ICLOCK, 1)
END IF

GO TO 500
C Print option 2 is to print all statistics if CLOCK = 0, or print
C statistic for individual clock
400 IF (CLOCK .NE. 0) THEN

ILO = ICLOCK
IHI = ICLOCK

ELSE
ITIME = NOWCPU(-1)
ILO = 1
IHI = NUMTIM

END IF
DO 450 I = ILO, IHI

ISTAT = NUMSTA(I)
IF (ISTAT .GT. 0) ISTAT = (10*ISUMTI(I))/ISTAT
CALL TIMOUT(LMEAN, ISTAT, I,10)

450 CONTINUE
500 RETURN

END
SUBROUTINE TIMOUT(LSTA, ISTAT, ICLOCK, IDIV)

C
C Since Fortran can't compute the Format statement while executing, we
C need a computed GOTO to write the correct statistic. As statistics
C are added, the computed goto must be modified. The numbering of the
C statements should be obvious
C

CHARACTER*4 LSTA
INTEGER ISTAT, ICLOCK, IDIV

C
C LSTA is 4 characters to print out to tell which type of statistic it is
C ISTAT is the statistic to print out
C ICLOCK selects the correct FORMAT statement
C IDIV is the amount to divide ISTAT by before printing
C

COMMON /MTIMFI/ ITIMFI
DOUBLE PRECISION RESULT

IF (ITIMFI -EQ. 0) GOTO 500

RESULT = DBLE(ISTAT)/DBLE(IDIV)
GOTO (110,140) ICLOCK

100 GOTO 500
110 WRITE(ITIMFI,1010) ICLOCK,LSTA,RESULT

GOTO 500
140 WRITE(ITIMFI,1040) ICLOCK,LSTA,RESULT

GOTO 500
500 RETURN

76

C
C What follows are the Format statements for each timer. Timer 1 uses
C line 1010, Timer 2 uses 1040, etc. They should all start with a place
C for an A4 and have a place for an 110
C
1010 FORMAT(lX,'Clock 1,12,lX,A4,1 time for entire program ',T50,F15.2,

*1 centiseconds')
1040 FORMAT(lX,'Clock ',12,lX,A4,' time for inner loop 1,T50,

*F15.2,1 centiseconds')
END

SWITCHES.DAT

0 0 0 0 0 0 0 0 0 0 C 0 0 0 0 0 0 0 1 0 1 0 0 0 0
0000000100000000000000000
10.D16 1.D10
1234567890123456789012345

1st row is hprint: 2nd row is xprint:
1. getabc (data echo) 1. Runcut
2. z2phase 2. Precut
3. zsolve 3. Objcut, Redcts
4. zsetrs, zpivot4 4. Cutpt,Cutpt2
5. setup 5. Cuthp
6. balas 6. Cutshr
7. hrun 7. Aratio
8. hsdir 8. 1=>MINIMAL SCREEN PRINTING
9. findfs 9. Ishr

10. fis2hp 10. Ishrsc, Isrend,Mincmp
11. iffeas 11. Bounds
12. phase3 12. Xrun
13. stayfs 13. Xcp
14. twovar, getfes 14. Xcb
15. hround, hrndpt 15. Ichkbd
16. VarOrder: 1)lo-hi; 2)hi-lo 16. Ilastv, Incmod
17. REDCTS: list active cts. 17. Ixpick
18. REORDR: fixed vars. first 18. 1 => STOP AFTER HRUN
19. HRUN: time/print Phases 19. 1 => STOP AFTER ICUT
20. HRUN: 1 => nhps = No.BFCXO 20. 1 => only use cutpt2
21. HRUN: 1 => avoid NCP check 21. Skip HRUN, start RUNCUT w/ Z*=0
22. 22.
23. 23.
24. 24.
25. 25.

3rd row: sizlim (for SHR size), callim (for XCALLS)--NOT USED

Note: for RANDOMLY GENERATED PROBLEMS: set hprint(16) - 2
for REALISTIC " : = 0

ILPDATA.DAT (sample file)

FC10.DAT
END

78

Input Format

m nall al bi (1,-I) (1 => ! constraint; -1 => 2)

aml amn bm {1,-lI
Cl Cn {1,-1) (1 => maximize; -1 => min.)

Em : ("FC-10" from Trauth and Woolsey, 1969)

FCIO.DAT

10 12
9 7 16 8 24 5 3 7 8 4 6 5 110 1

12 6 6 2 20 8 4 6 3 1 5 8 95 1
15 5 12 4 4 5 5 5 6 2 1 5 80 1
18 4 4 18 28 1 6 4 2 9 7 1 100 1

-12 0 0 0 0 0 1 0 0 0 0 0 0 1
0 -15 0 0 0 0 0 1 0 0 0 0 0 1
0 0 -12 0 0 0 0 0 1 0 0 0 0 1
0 0 0 -10 0 0 0 0 0 1 0 0 0 1
0 0 0 0 -11 0 0 0 0 0 1 0 0 1
0 0 0 0 0 -11 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 1 1 1 1 1

79

UNCLASSIFIED
SECU~ITY CLASSIFICATION 0F T141S PAGE 111 000e

REPORT DOCUMEWTATWO PAGE B&FID COISTIORK
T. WOR~T MUNNER Iaiow LCE MN RECIPIUMTs CATALOG NUMBER
Technical Report SOL 88-19

A, TITLE (sod SwI96 L. TYS OF REPORT & PRIOD COVERED
A Heuristic Ceiling Point Algorithm Technical Report
for General Integer Linear Proaramming

L. PERFORMIG OWE REPORT NuMBER

I. AUTHOR() S. CONTRACT ON GRANT MNM~sE).

Robert M. Saltzmnan and Frederick S. Hillier N00014-85-K-0343

S. PERFORMING ORGANIZATION MNZ AND ADDRES If PARG K UMNT. NUMBERSTS

Department of Operations Research - SOL WMU a

Stanford University 1111 MA
Stanford, CA 94305-4022 _______________

it. CONTROLLING OFFVICE MNM AND ADDRESS It- REPORT OATS

Office of Naval Research - Dept. of the Navy November 1988
S00 N. Quincy Street Is. "U3Eff or PAGES
Arlinaoton, VA 22217 79 Paaes

IS. SECUITr CLASS. (61i fts ew)

UNCLASSIFIED
IS. ~CI~SFICATION1 DOWNGRADING

16. DISTRIBUTION STATEMENT (a# d1. *@VON)

This document has been approved for public release and sale;
its distribution is unlimited.

17. DISTRMIDUTION STATEMENT rose .Owe a m..010d In 280A 2. 81 01SUPO 41000 Reut

III. SUPPLEMENTARY NOTES

IS. KEY WORDS (Cnhw reverse WO fI oeoMp an Iond or li..i aina.'

integer linear programming; general integer variables, heuristic algorithm;
ceiling points; linear programinn relaxation; enumeration algorithms

2&. ABSTRACT (C=Wft. si rewor bI00 Nnee WO wedOS b~ Wee ij8

(Please see other side)

DD I 'j'p 1473 awn"~ of 1 Nov BIM; 0is0 oATE

SECuMiTY CLASSIICATION OF T%$11 PAGE (U1we Dma 608166M

suCUNTY CLA8UVICAVWU OF T1418 PASK~U DWO Mh...e

Abstract

A Heuristic Ceiling Point Algorithm

for General Integer Linear Programming

Robert M. Saltzman and Frederick S. Hillier

Stanford University, 1988

This report describes a heuristic algorithm for the pure, general integer linear pro-

gramming problem (ILP). In attempting to quickly obtain a near-optimal solution (with-

out concern for establishing optimality), the algorithm searches for a "feasible 1-ceiling

point." A feasible 1-ceiling point may be thought of as an integer solution lying on or
near the boundary of the feasible region for the LP-relaxation associated with (ILP).

Precise definitions of 1-ceiling points and the role they play in an integer linear program

are presented in a recent report by the authors. One key theorem therein demonstrates

that all optimal solutions for an (ILP) whose feasible region is non-empty and bounded

are feasible 1-ceiling points. Consequently, such a problem may be solved by enumerating

just its feasible 1-ceiling points. Our heuristic approach is based upon the idea that a

feasible 1-ceiling point found relatively near the optimal solution for the LP-relaxation is

apt to have a high (possibly even optimal) objective function value. Having applied this

Heuristic Ceiling Point Algorithm to 48 test problems taken from the literature, it appears

that searching for such 1-ceiling points usually does provide a very good solution with a

moderate amount of computational effort.

.ECUMRYI CL AIsI CAYW O9 ?M PA 6It(IgA OF St .

